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Adaptive parallel applications that can change resources during execution, 

promise increased application performance and better system utilization. Furthermore, 

they open the opportunity for developing a new class of parallel applications driven by 

unpredictable data and events. The research issues in an adaptive parallel system are 

complex and interrelated. The nature and complexities of the relationships among these 

issues are not well researched and understood. Before developing adaptive applications or 

an infrastructure support for adaptive applications, these issues need to be investigated 

and studied in detail. One way of understanding and investigating these issues is by 

modeling and simulation. A model for adaptive parallel systems has been developed to 

enable the investigation of the impact of malleable workloads on its performance. The 

model can be used to determine how different model parameters impact the performance 

of the system and to determine the relationships among them. 

Subsequently, a discrete event simulator has been developed to numerically 

simulate the model. Using the simulator, the impact of the variation in the number of 

malleable jobs in the workload, the flexibility, the negotiation cost, and the adaptation 
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cost on system performance have been studied.  The results and conclusions of these 

simulation experiments are presented and discussed, suggesting interesting insight for 

further investigation. 

In general, the simulation results reveal that the performance improves with an 

increase in the number of malleable jobs in a workload, and that the performance 

saturates at a certain percentage of rigid to malleable jobs mix. A high percentage of 

malleable jobs is not necessary to achieve significant improvement in performance. The 

performance in general improves as the flexibility increases up to a certain point; then, it 

saturates. The negotiation cost impacts the performance, but not significantly. The 

number of negotiations for a given workload increases as number of malleable jobs 

increases up to a certain point, and then it decreases as number of malleable jobs 

increases further. The performance degrades as the application adaptation cost increases. 

The impact of the application adaptation cost on performance is much more significant 

compared to that of the negotiation cost.  
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CHAPTER I 

INTRODUCTION 

This dissertation addresses the problem of modeling and simulation of an adaptive 

parallel system with malleable applications in a distributed environment.  In order to 

demonstrate the utility of simulation environment, we present results, analysis, and 

interpretations of simulation experiments with malleable applications in an adaptive 

parallel system. The purpose of this chapter is to outline the research work conducted, 

provide necessary background, present the motivation for the research, postulate the 

research hypothesis, discuss contributions, and clarify the terminology used throughout 

the document. 

1.1 Adaptive Parallel Applications 

Feitelson and Rudolph [1] classified parallel applications into four groups based 

on who decides the number of processors to be used by a parallel application and on 

when the decision is made. The classification is shown in Table 1.1. 

Table 1.1 Classification of parallel applications 

Who decides When decided 
At submission During execution 

Application Rigid Evolving 
System Moldable Malleable 

1 
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A rigid application requires a certain number of processors as specified by the 

user at application submission time, and it cannot execute with fewer processors or make 

use of any additional processors. In the case of a moldable application, the number of 

processors assigned is determined by the system scheduler within certain constraints and 

the application may use only that particular number of processors throughout its 

execution. An evolving application may initiate a change in the number of processors 

during execution. In the case of a malleable application, the number of processors 

assigned to an application may change during execution as a result of the system offering 

it additional processors or requiring that the application releases some. Throughout this 

dissertation we define adaptive applications as applications that are evolving or 

malleable according to Feitelson’s classification. The change in resource requirements in 

an evolving application is triggered by the application itself due to the nature of the 

problem and employed algorithms, while in malleable applications, change is triggered 

by events external to the application such as changes in hardware availability, 

applications of higher priority requiring more resources, and others reasons. 

Characteristics of Adaptive Parallel Applications: There are many scientific and 

engineering applications which work with large input data and are computationally 

intensive. Some of these applications are highly parallel (including embarrassingly 

parallel) in nature. Among these there are highly scalable applications operating over a 

long range of resources. The total amount of computation for these applications does not 

vary from execution to execution for the same input data. Currently, these applications 

are implemented as rigid or moldable parallel applications. These types of applications 

2 
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are good candidates for conversion to malleable applications where the resource 

management system (RMS) can provide them with idle resources whenever available and 

take away resources whenever high priority applications or other evolving applications 

need them.  

Examples of evolving applications with predictable computation are parallel 

applications where computational workload varies during the execution due to nature of 

the problem, the employed algorithm, and an unpredictable non-uniform distribution of 

input data. The total computational workload of these applications does not vary from 

execution to execution for the same input data. The parallel Fast Multipole algorithm for 

N-body simulation is an example of such applications [2][3]. The N-body simulations 

consider N particles, their positions and velocities, and the problem is to compute the 

forces they exert on each other, and then calculate their new positions. This problem has 

been widely used in a broad class of application areas of science such as astrophysics, 

molecular dynamics, biophysics, molecular chemistry, and others. Even though the 

amount of total computation does not vary, due to the nature of algorithm, the 

computational requirements and consequently, the resource requirements of these types 

of applications change during a single run. 

There are evolving applications in the fields of science and engineering where 

computational workload varies from execution to execution for the same input data. An 

example of such a field is weather prediction. Traditional weather forecasting systems are 

static in nature. They run simulations on a pre-scheduled space and forecasting time. 

Such systems cannot respond to mesoscale weather changes that can appear suddenly and 

3 
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evolve rapidly. The researchers are working on the next generation of forecasting systems 

which will adapt dynamically both in time and space. The simulations will generate 

successive forecasts more frequently, and they will run on higher resolution grids for 

more accurate predictions. The resource requirements (processors, disk storage and 

network bandwidth) of such applications change dynamically during execution. One of 

the major obstacles of realizing such adaptive weather prediction systems is the absence 

of “adaptive cyber infrastructure” capable of supporting adaptive applications [4][5]. The 

amount of computation of these types of applications varies from execution to execution, 

even for same input data due to unpredictable conditions that can occur during execution. 

The resource requirements of such an application may also vary during its executions and 

cannot be determined precisely before the execution starts. Such applications are an 

example of evolving applications. 

In general adaptive applications may have the following characteristics: 

1. In a parallel application, the amount of computation for the same input data may 

remain the same from one execution to another or it may vary due to 

unpredictable events or data during execution. One may expect that the amount of 

computation for malleable applications will be constant, while for evolving 

applications the amount of computation may change during execution. That 

would require consumption of additional resources or release of idle resources. 

2. Applications may have certain resource utilization characteristics. They may not 

be able to utilize any arbitrary amount of resources between a maximum and a 

minimum amount. For example, many applications require that the number of 

4 
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processors be a power of two. If such an application is running on eight 

processors, it would not be able to utilize four additional processors or release two 

processors. However it may be able to utilize eight additional processors if 

allocated or release four processors if required. 

3. Adaptive applications consist of phases. The amount of resource consumed within 

a phase remains unchanged. Applications can change resource consumption at 

phase boundaries. Parallel applications have natural breakpoints where processes 

of an application can synchronize, exchange data, or redistribute data among 

themselves. As a result, in such applications, adaptation (consumption of 

additional resources or release of idle resources) can occur at these breakpoints, 

not arbitrarily at any point in time during execution. If a malleable application is 

allocated additional resources or asked to release some resources, it consumes or 

releases resources at the next breakpoint where it can reconfigure itself to 

consume or release resources. Consequently, there may be a time gap between the 

adaptation decision by the Resource Management System (RMS) (asking an 

application to consume or release resources), and the actual adaptation 

(consumption or release of resources). The interval between two consecutive 

breakpoints constitutes a phase. Rigid and moldable applications have only one 

phase while evolving and malleable applications have multiple phases. 

4. Both malleable and evolving applications require communications and negotiate 

resources with the RMS. The negotiations can be initiated either by the RMS in 
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case of malleable applications or by the applications in case of evolving 

applications. 

1.2 A Resource Management System for Adaptive Parallel Applications  

An adaptive parallel system is defined as a system that consists of a Resource 

Management System (RMS) managing a cluster of nodes and a set of parallel 

applications containing rigid as well as malleable applications. The goal of an RMS is to 

provide support for efficient utilization of computational resources and for resolving 

conflicts of interests between the end users. The schedule determines the order in which 

the applications are executed on computing nodes. The schedule is generated according 

to system policies. The RMS functionality also includes actual resource allocation 

(submitting the applications) or de-allocation (terminating the applications), and reporting 

the applications’ status (such as pending, running, or completed) to the system 

administrator and to the end users. To perform its functions, the RMS monitors its 

resources and accepts messages about resource status changes such as a processor failure, 

or application completion and a resulting release of resources. Typically, an RMS has 

two main components: the server and the node controllers. 

The Server: The server is the central coordinator of the RMS and is responsible 

for gathering information about the available resources, accepting applications from the 

users, organizing those applications in queues, and initiating a schedule cycle.  Once a 

schedule is contrived, the server contacts the individual node controllers which place 

applications into execution. The server contains a scheduler that computes a schedule 
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when the server initiates a scheduling cycle. The scheduler implements a scheduling 

algorithm to satisfy the system policies taking into account the current status of the 

system (i.e. information about the state of the resources and queued applications). The 

generation of a schedule is triggered by scheduling events. Traditional RMS has two 

types of scheduling events: i) submission of an application by user, ii) termination of a 

running application. 

The Node Controller: There is one node controller for each computing node and 

each acts as an agent of the server. The node controller starts and controls applications on 

the nodes and reports node and application status to the server.   

If a workload contains malleable and evolving applications in addition to rigid 

applications, a traditional RMS will require additional functionalities to manage adaptive 

applications. In an adaptive parallel system, while computing a schedule, if enough 

resources are not available, the RMS has the option of preempting resources from 

running malleable applications. When running evolving applications require additional 

resources, they must ask the RMS for resources and the RMS must consider these 

requests while computing a schedule. Multiple evolving applications may request 

additional resources at the same time. The RMS must be able to handle multiple 

simultaneous resource requests from evolving applications efficiently. If idle resources 

are available and there are no pending applications, they may be allocated to running 

malleable applications. If computing a schedule involves preemption of resources from 

multiple malleable applications and/or allocation of resources to multiple evolving 

applications, the RMS must communicate and negotiate with all these running 
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applications within a single scheduling cycle. The RMS must also efficiently manage 

these negotiations with multiple applications in a single scheduling cycle. 

1.3 Motivation 

Current resource management systems for clusters primarily support rigid 

applications. A few systems support moldable applications, where there is some 

flexibility in the amount of resources that can be assigned before the applications start. 

However, the resources are fixed once the applications start execution.  A new paradigm 

for cluster resource management is required as result of the dynamic resource 

requirements of adaptive applications, as well as of the unpredictability of resource 

utilization in a cluster. On one hand, an evolving application may require additional 

resources during execution to accomplish its objectives or relinquish resources not 

needed for its level of current workload. On the other hand, changes in the computing 

environment may require that a currently executing application be malleable. In this case, 

the application should be capable of relinquishing currently assigned resources for use by 

other applications, which are critical, or be capable of using additional resources that are 

otherwise idle, for earlier completion. 

In addition to the possibility of underutilizing resources, fixing the number of 

processors assigned to an application may also prevent another application with a higher 

priority or revenue from being started due to an insufficient number of available 

processors in the system. To retain the capability of the system to immediately start 

higher priority applications without preempting running applications and to avoid the 
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penalty for lost opportunities, it makes sense for the resource manager to be able to 

request processors from currently executing applications that have lower priorities or 

revenues. 

Enabling the execution of malleable and evolving applications on clusters leads to 

the potential of birth of a new paradigm for cluster computing. This paradigm will 

provide a framework for improving the utilization of existing clusters by allowing idle 

resources to be assigned to currently executing applications. It will also provide a 

framework for supporting mission-critical applications on general-purpose clusters by 

allowing a reassignment of already committed resources and excluding the need for 

expensive dedicated resources. The paradigm has the potential to improve the capability, 

responsiveness, and efficiency of existing clusters, as well to create new ways of utilizing 

current technologies for emerging applications characterized by dynamic resource 

requirements. It will also open up the opportunity of implementing a new class of parallel 

applications driven by unpredictable data and events. The paradigm will further propel 

the research for fundamental understanding of evolving and malleable applications, and 

their interactions with resource management systems and scheduling techniques, leading 

to the design and building of supportive computing system software.  

The research issues in an adaptive parallel system are complex and interrelated. 

The nature, complexities and relationship of these issues are not well researched and 

understood. Before developing adaptive applications or an infrastructure support for 

adaptive applications these issues need to be investigated and studied in detail. One way 

of understanding and investigating these issues is by modeling and simulation. Modeling 
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and simulation of an adaptive parallel system will help us to understand, analyze and 

predict the behavior of adaptive applications and of the new RMS. 

1.4 Research Issues in an Adaptive Parallel System 

From the description presented in sections 1.1 and 1.2, it is evident that the 

management of adaptive applications in a cluster environment is a complex and multi-

faceted problem. Some of the most important research issues are described below. 

1.4.1  The Communication and Negotiation with Running Applications  

In the current job-scheduling paradigm, once a job starts executing, no 

communication takes place between the application and the RMS.  In an adaptive parallel 

system, communication and negotiation between the RMS and adaptive application is 

necessary. One of the research problems in an adaptive parallel system is concerned with 

what would be the communication mechanism and negotiation protocol between the 

adaptive applications and the RMS and with how the negotiation would be carried out. 

1.4.2  The Negotiation Management 

In an adaptive parallel system the need for negotiations arises from the 

characteristics of adaptive applications. These negotiations need to be managed 

efficiently, and that is a complex problem. For example when there are multiple requests 

from several running evolving applications, the RMS can initiate a scheduling cycle for 

every request, or it can group a set of requests and handle them together. Also, during 
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computation of a schedule, the RMS has to communicate and negotiate with multiple 

running applications. These negotiations may be carried out sequentially one after 

another. Alternatively, they can be carried out in parallel. Different negotiation 

management strategies would require different design and implementations of the RMS 

and they may impact the performance of the system and applications in different ways. 

1.4.3  The Scheduling 

Scheduling algorithms for adaptive applications are more complex than those for 

rigid applications. The scheduler has to respond in a timely manner to the demands of 

both running and queued applications. If enough resources are not available, it has to 

choose resource preemption candidates among running malleable applications. When idle 

resources are available, the algorithm must decide how to allocate the idle resources 

among the running malleable applications. If multiple evolving applications are 

requesting additional resources and if enough resources are not available even after 

preemption, the scheduling algorithm has to decide how to address those requests. 

Essentially, scheduling in an adaptive parallel system is a multi-step procedure that 

involves computing a schedule, negotiation with running applications, and re-computing 

the schedule. The re-computation of a schedule may result in requiring further 

negotiations. 

1.4.4 Programming Model for Adaptive Applications 

The structure of adaptive applications is different from that of rigid applications. 

They need to communicate and negotiate with the RMS using a protocol that the RMS 
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understands. Adaptive applications require reconfiguring themselves when additional 

resources are consumed or idle resources are released. The reconfiguration may require 

data redistribution, creation of new processes or deletion of existing processes etc. 

Currently, to the best of our knowledge, there is no programming model which captures 

all the aspects of an adaptive parallel application. 

1.4.5  Overall Model of an Adaptive Parallel System 

The research issues mentioned above are not independent but interrelated. For 

example, computing a schedule may involve negotiations with running adaptive 

applications. Consequently, the outcome and cost of scheduling depends on how 

negotiation is carried out and managed. The negotiation involves the RMS and the 

running applications. As a result, the characteristics and the model of adaptive 

applications influence the negations. The interdependencies and relationships of 

scheduling, negotiation, and application behaviors impact the overall architecture of an 

adaptive RMS. The relationships among these research issues and their overall impact on 

the model of an adaptive parallel system are not yet very well understood. 

1.5 Ongoing Work in Adaptive Parallel Systems 

This section presents a brief summary of related research in adaptive parallel 

systems, while a detail review of related research is presented in Chapter II. The adaptive 

parallel system is not a well-researched area in computer science. Some research has been 

conducted on scheduling of moldable and malleable applications [6][7][8][9]. Some work 

has been accomplished on developing infrastructure support for adaptive applications 
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[10][11][12][13][14][15]. None of these efforts have explicitly targeted the 

communication and negotiations between the applications and the RMS or dynamic 

resource reallocation that are imperative to support adaptive applications.  

We have been working on developing infrastructure support for adaptive 

applications in cluster environments. The outcome of our efforts so far has been reported 

in [16][17][18]. A protocol for resource negotiation between adaptive applications and 

the RMS has been developed. Experiments with prototype implementations show that the 

protocol works. It covers a wide range of interaction scenarios between applications and 

the RMS, and the overhead of the protocol is very low [16]. We have also proposed an 

architecture for an RMS capable of managing adaptive applications. An early prototype 

implementation indicates that developing a robust RMS capable of managing adaptive 

applications in cluster environment is possible, and that adaptive applications show 

promise for improving system performance [7][18]. However, during our research work, 

we have realized that the area of adaptive parallel applications and system support for 

executing such applications is not a well-researched area in computer science. The 

properties of adaptive applications, their impact on the RMS and on the middleware are 

not well understood and require further investigations. This leads to our current research 

effort on modeling an adaptive parallel system as a whole to understand and analyze 

properties of adaptive applications, the RMS, and their effects on each other. 

1.6 Dissertation Objectives   

The context of this dissertation is to develop a model for an adaptive parallel 

system with malleable applications and to investigate it using simulation. In general, the 
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presence of malleable applications imposes new requirements on all the components of 

an adaptive parallel system. The dissertation objective is to investigate the impact of 

these requirements by modeling and simulation. In particular, the objectives of this 

dissertation are to investigate the impact of the characteristics of the workload and those 

of the RMS on system performance. More specifically, the effect of the number of 

malleable applications in the workload, their flexibility, cost of negotiation, and cost of 

adaptation on system performance will be investigated.  

1.7 Hypothesis 

A model for adaptive parallel systems can be developed to enable the 

investigation of the impact of malleable workloads on its performance. The model can be 

used to determine how different model parameters impact the performance of the system 

and, to develop a better understanding of the relationships among them. This model can 

be used to predict the performance variation in the presence of malleable applications as 

opposed to the same applications being rigid. 

1.8 Contributions 

The primary contribution of this dissertation is the design and implementation of a 

model for an adaptive parallel system, and the demonstration of how this model can be 

used to gain new knowledge about the impact of the model parameters on performance of 

the adaptive parallel system. The main contributions of the dissertation are summarized 

below. 
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The design and implementation of: 

a. A conceptual model and subsequently a semi-formal mathematical model 
for an adaptive parallel system.  

b. A model for generating malleable workload.  

c. A discrete event simulator to numerically simulate models of adaptive 
parallel systems. In particular, the simulator can be used to determine the 
impact of RMS, application and workload parameters on system 
performance.  

d. A prototype RMS system capable of managing malleable as well as rigid 
applications. 

- The demonstration of model utility through discovery of the following 

knowledge about an adaptive parallel system with malleable applications: 

e. The performance in general improves with an increase in number of 
malleable jobs in a workload and the performance saturates at a certain 
job mix. At this point, a higher percentage of malleable jobs do not result 
in significant improvement in performance. 

f. Presence of malleable jobs in a workload decreases the average turn 
around time and average wait time. However, the presence of malleable 
applications increases the average execution time. 

g. The performance in general improves as the flexibility increases up to 
certain point. 

h. The negotiation cost does not significantly impact the performance. 

i. The number of negotiations for a given workload increases as number of 
malleable jobs increases up to a certain point. As the number of 
malleable jobs increases further the number of negotiations decreases and 
it reaches a minimum with 100% malleable jobs. 

j. The performance degrades as the application adaptation cost increases. 
The impact of application adaptation cost is much more profound 
compared to negotiation cost.       
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1.9 Organization  

This remainder of the dissertation is organized as follows. Chapter II presents a 

review of the background literature related to the current work. Chapter III discusses a 

conceptual and mathematical model for an adaptive parallel system. A discrete event 

simulator and a prototype implementation of an RMS for an adaptive parallel system are 

presented in chapter IV.  Chapter V describes simulation experiments to validate the 

simulator. In Chapter VI results and analysis of experiments to investigate the impact of 

model parameters on performance are discussed. Finally, Chapter VII presents a 

summary and describes future extensions and possible applications of this research. 

16 



www.manaraa.com

    
 

 

 
 

 

 

 

 

 

 

 

CHAPTER II  

BACKGROUND AND RELATED WORK 

The area of adaptive parallel system is a promising research area that has only 

recently begun to attract attention.  It is not a well researched topic in computer science 

and therefore today, there is only a handful of literatures available in this area. The 

related works in this area can be grouped in three main areas: 

(a) Resource Management System (RMS) and language support for adaptive 

parallel applications 

(b) Scheduling of adaptive parallel applications 

(c) Programming models for adaptive parallel applications 

The following sections review selected research work that is deemed relevant to the 

dissertation. 

2.1 RMS And Language Support for Adaptive Parallel Applications 

Much work has been conducted on Resource Management System (RMS), both in 

academia [9][20][21][22] and industry [23][24][25][26][27][28], addressing many vital 

aspects of efficient resource management. These systems represent the current state-of-

the-art for problems that can be solved using static and open-loop scheduling approaches. 

They deal with both simple workloads (independent sequential and parallel jobs) and 

dependant workloads (workflows) [28]. Some implementations support moldable jobs 
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[28]. Other implementations address resource co-allocation through advance resource 

reservation. 

The need for RMS support for adaptive applications on distributed memory 

systems has been recognized and addressed by many researchers. In the simplest form, 

the adaptation can be achieved by checkpointing a running application and restarting it 

with a different resource allocation. Vadhiyar and Dongarra [29] developed a framework 

for malleable jobs called SRS (Stop and Restart System) based on check pointing and 

migrations. Using this framework users can checkpoint and stop a parallel application 

and then restart the application on a different number of processors to continue from the 

checkpointed state. 

To expand or shrink an application, users have to checkpoint and stop a job and 

then restart the application on the different number of processor, which incurs large 

overhead. Data redistribution is done by the SRS library and it supports very simple 

parallel applications. SRS does not support applications with file I/O, structures and 

pointers. Users need to modify their applications to use this framework. SRS does not 

address the resource allocation or scheduling problem directly. It is more of a checkpoint-

restart system than a resource management system for malleable jobs. 

One of the early research efforts in developing RMS was a malleable job system for 

time shared parallel machine developed by Kale et. al. [14][15]. This work concentrates 

on developing a framework for malleable applications for timeshared parallel machines. 

The framework consists of three components, a scheduler, the Charm [30][31] runtime 

system based on converse [32], and a set of malleable jobs developed using AMPI [33] or 
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Charm++[31]. AMPI is an adaptive version of MPI implemented as user level threads. 

Malleable programs based on AMPI consist of a large number of virtual processes 

implemented as user level threads. Typically the number of virtual processes is larger 

than the number of actual processors. Charm++ is an object-based language for parallel 

programming. A Charm++ parallel program is mapped to a large number of parallel 

objects that communicate with each other by message passing. The Charm runtime 

system has a load balancer that balances the load between processors by redistributing 

threads or objects. Parallel program developed on the Charm system has the ability to 

accept a processor map (a bit vector) from external programs. A set bit in the processor 

map indicates that the processor is allocated to the program. In Charm a new parallel job 

is started on all processors in the system but load is only allocated to the processors 

enabled in the processor map. The scheduler adapts (shrinks or expands) a malleable job 

by sending a new processor allocation (bit vector) to the job; the run time system then 

balances load by migrating processes from old allocation to new allocation. A skeleton 

process is left behind on each vacated processor to forward messages meant for processes 

that were previously running on that processor.   

As there is no support for accepting a request from a running job, the charm 

framework does not support evolving jobs. There is only one-way communication from 

the scheduler to the running job. Therefore, there is no support for negotiation between a 

running job and the scheduler. Applications developed in this framework are not truly 

malleable applications because there are fixed number of processes throughout the life 

time of an application with shrinkage and expansion achieved by folding or unfolding 
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processes onto physical processor. In this system a malleable application has to be 

developed in AMPI or charm++. A bit vector is too simplistic and cannot be used for 

scheduling other resources (memory, disk space, bandwidth etc.). 

The Distributed Resource Management System (DRMS) [13][34][35] is an 

integrated environment for the development, execution and resource scheduling of 

adaptive applications. DRMS supports adaptive applications based on SOP (Schedulable 

and Observable Point) model. In the SOP model, the execution of a parallel program 

consists of a sequence of stages. Each stage is like a conventional SPMD program, and 

the number of tasks and the association between data spaces and tasks is fixed during a 

stage. The boundary between stages is called SOP. The stage of a program can only be 

examined at an SOP and the number of tasks and association between tasks and data 

space can be altered. Each stage in a SOP program consists of four sections: resource, 

data, control and computation. The resource section specifies the number of tasks in the 

form of a range of valid number of tasks. Once a specific number of tasks are selected for 

execution of a stage, the data section specifies an association between data space and 

tasks. The control section specifies the values for control variables pertinent to the stage. 

Finally, the computation section specifies the computations and communications that 

each task performs during the stage.  

The main components of the DRMS framework are: the DRMS compiler, job 

scheduler and analyzer (JSA), resource coordinator (RC), and a run time system (RTS). 

The DRMS compiler translates a program written in the DRMS language, linking them 

with RTS to create a reconfigurable (malleable according to our definition) SOP 
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program. DRMS language is an extension to FORTRAN that includes directives for 

creating a SOP program. The resource allocation and scheduling decisions are made by 

the JSA on the basis of implemented scheduling policies. The RC on behalf of JSA 

communicates with running applications to convey reconfiguration decisions. An 

application compiled under the DRMS has an associated task coordinator (TC) consisting 

of multiple agents. One of the agents acts as master coordinator and communicates with 

RC. The TC delivers reconfiguration messages to RTS. At the next SOP the RTS in 

conjunction with TC, redistributes application data so that application can run with a new 

set of tasks on a new set of processors. 

The DRMS is a tightly coupled integrated environment. Applications have to be 

developed in the DRMS environment and DRMS supports adaptive applications 

developed in FORTAN based on SOP model only. There is no support for resource 

negotiation in DRMS. Therefore, the JSA needs to know the valid resource configuration 

of applications in advance to be able to reconfigure an application. The data redistribution 

after reconfiguration is done by the system, not by the application as a result the DRMS 

supports a limited class of parallel application. 

Hungershofer et. al. [10][11] developed a resource management system called 

Application Parallelism Manager(APM) for scheduling malleable jobs on shared memory 

machines. APM determines processor assignment to running jobs based on estimated 

current speedup to maximize system utilization. APM is implemented as a single server 

consisting of a database and two threads which access the database. One thread listens for 

information from the running application and stores it in the database. The other thread 
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reads information from the database, computes processor assignments and sends the 

assignments to running applications. Entries in the database are created when a running 

application connects to the server for the first time and the entries are deleted when an 

application disconnects after its completion. The APM and malleable applications 

communicate with each other using TCP sockets. Applications send runtimes of parallel 

and sequential phases to the APM. The information sent out by the application has to be 

provided by the application itself. Applications send their information periodically and 

also send information when major changes occur. For communication with the APM, 

applications need to be compiled with a library provided by APM. Applications also need 

to incorporate codes to monitor their sequential and parallel runtime. The information 

sent by the APM to applications contains only one single value specifying the number of 

assigned processors. 

The APM implemented two scheduling policies. One is equipartitioning where 

processors are distributed equally among running jobs. The other policy is based on 

application speed up. The system was tested on a 16 processor SMP system with 4 

instance of the same application (a multi-threaded finite element simulation). The results 

indicate that both scheduling policies achieve a shorter schedule span than optimal offline 

schedule with moldable jobs.  The authors reported that scheduling many malleable 

applications on a large system leads to complex behavior. It is not clear from their 

publications how APM will perform with large number of applications on a large system. 

APM works on shared memory machines only and it does not support evolving 

applications 
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The work by Jha et al. [36][37] addresses the adaptive resource allocation 

problem for a pool of dependent applications (subtasks) cooperating in real time towards 

a common goal. The applications are event driven and data dependent and their 

computational needs and resource requirements vary due to runtime changes in event 

rates and input data content. Jha et al. have adopted a four step operational model for 

dynamic resource allocation to meet the deadline of the entire application. 

Monitor application performance using real time instrumentation. 

Detect deviation in performance from desired performance level. 

Compute a new resource allocation that would likely improve performance 
significantly. 

Effect the new resource allocation in a manner that minimizes the perturbation to 
the application due to the transition. 

The system does not accept any new job arrival and minimizes the total execution 

time of the complete task. The applications are instrumented to monitor their 

performance and to report the current rate of data processing to the system. The system 

analyzes the reports from all concurrently running applications and reallocates resources 

in order to meet the deadline for the entire task. This solution is application domain-

specific as the system is responsible for converting the rate of data processing of the 

subtasks into an estimate of the completion time, leaving no room for the resource 

negotiations. 

Little research  has been reported in the  literature about language and runtime 

support for developing adaptive applications. Edjlai et al. developed a runtime library 

called Adaptive Multiblock PARTI (AMP)[38][39] that enable users to create adaptive 

applications. AMP can be used by compilers for data parallel applications such as HPF or 
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it can be used by a programmer for developing adaptive parallel applications by hand. 

According to the authors there are two major issues in executing applications in an 

adaptive environment: 

Redistributing data when the number of available processors changes during the 
execution of the program. 

Handling work distribution and communication, insertion and optimization when 
the number of processors on which a given parallel loop will be executed is not 
known at compile time. 

AMP addresses both of these issues and supports parallel programs using the 

single program multiple data (SPMD) model of execution. It is targeted towards an 

environment in which a parallel program must adapt according to the system load. AMP 

assumes that 

The adaptive program does not remap immediately when the system load 
changes. 

When the program remaps from a larger number of processors to a smaller 
number of processors, it may continue to use a small number of cycles on the 
processors it no longer uses for computation. 

An application based on AMP is marked with remap points, and adaptation can 

occurs only at remap points. Remap points can be specified by the programmer if the 

program is parallelized by hand, or may be inserted by the compiler if the program is 

compiled by a parallel compiler such as HPF. An AMP program is spawned on the 

maximum number of processors on which it can run. At remap points AMP determines if 

there is a need for adaptation. If the system load requires adaptation, data redistribution is 

used to move the active data to a different subset of processes called active processes. 

Only the processes that belong to this subset perform computation. The processes from 
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which all data has been removed are called skeleton processes. They still execute the 

code for the application but, since they have no data associated, they do not perform 

intensive computations. AMP imposes a hard limit on the maximum number of active 

processes, namely the number of processes that were originally spawned. The skeleton 

processes can interfere with other applications that have active processes on the same 

physical processors. 

2.2 Scheduling of Adaptive Applications 

Scheduling algorithms that have been developed so far vary in their objectives 

and approach to solving the problem at hand. Most of these algorithms have their roots in 

queuing theory, graph theory, dynamic and linear programming, and most recently, 

genetic and annealing algorithms. This section presents a review of related research 

works on scheduling algorithms for adaptive application. 

Most of the current work on scheduling adaptive applications has been theoretical. 

Turek, Wolf, and Yu [40] used approximation algorithms and were the first to propose a 

two-phase approach to schedule malleable jobs. Their goal was to find a non-preemptive 

schedule that minimizes the make span (total of maximum execution time for all jobs). 

The basic idea is to select an allotment (number of processors allocated to each task) 

using a packing algorithm, and then solve the scheduling problem of these tasks using 

non-malleable scheduling algorithms. This effort resulted in a polynomial time allotment 

selection algorithm. The results were further improved by Dutot, Mounie and 

Trystram[41]. Dutot et al. [6][7][8][9] proposed several approximation algorithms for 

scheduling moldable and malleable applications. Two scheduling criteria were considered 

25 



www.manaraa.com

    
 

 

 

 

 

  

 

for evaluating the algorithms: minimization of the makespan and minimization of the 

average completion time. For the problem of scheduling malleable applications, their 

approach was based on batch scheduling; applications may arrive at anytime, but are 

scheduled in successive batches. Mounie, Rapine, and Trystram [10] adopt a two-phase 

approach similar to the method of Turek et al. [40] and focuse on the first phase, the 

allotment selection, to reduce its complexity. The allotment selection was done by either 

using the canonical list scheduling algorithm or a knapsack algorithm, resulting in a 

linear time complexity. They defined a moldable job using Feiteson’s [1] definition as 

malleable job. Their research does not consider true malleable jobs (i.e. job that can 

change number of processors during execution) in their scheduling algorithms. 

Most current RMS use simple scheduling schemes such as First-Come-First-

Served and priority with some variation of backfilling or gang scheduling. Only a few of 

these RMS are aware of adaptive applications, and they use a heuristic approach for 

scheduling adaptive applications. 

The dynamic resource management system DRMS [16] uses a 

reconfigurable scheduling (RS) policy. Each malleable application has to provide a set of 

acceptable numbers of processors it is capable of executing on. Under the RS policy, 

whenever processors are available to schedule jobs, the scheduler tries to schedule jobs in 

the order in which they arrived. However, instead of scheduling the earliest job on the 

maximum possible number of processors, it tries to schedule as many of the currently 

waiting jobs in the pending queue as possible. When not enough free processors are 

available and there are jobs waiting to run, it tries to free up processors from jobs that are 
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currently running on more than their minimum number of processors. Similarly, when 

there are no jobs waiting to be run and free processors are available RS tries to expand 

one or more of the running jobs to run on a larger set of processors. The authors 

compared the performance of reconfigurable scheduling with maximum-to-fit non-

adaptive scheduling. A non-adaptive scheduling workload consists of moldable jobs only. 

Simulation experiments showed that, compared to non-adaptive policy, a reconfigurable 

policy always performs better.  

Kale et. Al. [14][15] adopted a similar approach to schedule malleable jobs. Each 

arriving jobs specifies the minimum and maximum number of processors it can use. 

When a new job arrives, the scheduler recalculates the number of processors allocated to 

each running jobs. All jobs, including the new ones, are allocated their minimum number 

of processors. Leftover processors are shared equally, subject to each job’s maximum 

processor usage. If a new job cannot be scheduled, it remains in the pending queue. When 

a running job finishes, the scheduler applies the same algorithm to allocate the free 

processors. Experiments with actual applications and simulation showed that both system 

utilization and mean response time improves with adaptive scheduling. 

Hungershofer et al. [10][11]] implemented adaptive scheduling algorithms based 

on two different policies: equipartitioning and accumulated speed up. In both policies 

malleable jobs are started with a minimum number of processors. In the equipartitioning 

policy, free processors are distributed evenly among running malleable jobs. The other 

policy is based on application speed up. APM estimates the speed up of all running 

applications on an additional processor. The application with the highest differential 
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speed up (difference between current speed up and speedup on one additional processor) 

is allocated an additional processor. Experimental results show that the equipartitioning 

policy leads to better response times, while the accumulated speed up policy increases the 

throughput of the system. 

2.3 Programming Model for Adaptive Applications 

The major issues in developing adaptive applications are programming 

abstraction and efficient support for runtime adaptation. Programming abstractions 

should be easy to use so that application developers are motivated to develop adaptive 

applications. The programming abstraction should be easy such that they can be added to 

non-adaptive applications without much effort to convert them into adaptive applications. 

The mechanisms for supporting adaptive applications that has been reported in the 

literature for various programming models are described below. The programming 

models can be grouped into five categories: master-worker model, fork-join model, fixed 

task model and SOP model. 

Master-worker model: Applications in this model consist of a master and several 

workers and computation for worker tasks is dynamically carved out. The master is a 

global entity that defines the tasks that must be executed and the data on which they 

operate. The master can be active (a process) or passive (a global state pool). The 

workers are given or fetch tasks from the master, execute them and return the result to the 

master. The Piranha[42] system is an example of a mechanism to support adaptive 

applications developed based on the Linda workers model [43][44]. The Linda model is a 

general model for parallel programming based on distributed data structures. In Linda the 
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total work to be done by the program is broken into  a number of discrete tasks, which are 

stored in a global data space. One process known as the master is responsible for 

generating the tasks and gathering and processing the results. Actual program execution 

involves a number of component processes known as workers. Each worker removes a 

task, completes it, and then grabs another until some condition is met. Workers may 

encounter a special type of task known as a poison pill telling it to terminate [44]. Linda 

supports dynamic creation of processes. Piranha was mainly developed to utilize idle 

cycles in a network of workstations. It moves Linda processes from heavily loaded 

workstations to idle workstations. 

Fork-Join Model: In this model a number of kernel level threads are scheduled for 

execution on physical processors; these kernel threads are then used as virtual processors 

for the execution of user level threads. The user level threads are created to execute tasks 

from a shared task queue. Examples of systems that use the fork-join model to support 

adaptation are Cray Multitasking [45], Process Control [46], Minos [47] and 

Autoscheduling [48][49]. The work on fork-join models mentioned above is all in the 

context of shared memory multiprocessors machines. 

Fixed Task Model: This model supports adaptation of SPMD programs with in a 

fixed number of executing tasks. An application in the fixed task model is started with the 

maximum number of tasks (either thread or process) on which it can run. Examples of the 

fixed task model are programs based on AMPI [14][15] and AMP [38][39]. This model 

supports malleable applications only. Programs based on AMPI work in shared memory 

machines and consist of a large number of virtual processes implemented as user threads. 
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Typically the number of virtual processes is larger than the number of actual processors. 

Adaptation (shrinkage and expansion) is achieved by folding or unfolding threads onto 

allocated physical processors. In the case of AMP, adaptation is achieved by 

redistributing the active data to a subset of processes leaving some skeleton processes.  

SOP Model: In the SOP programming model, the execution of a parallel program 

consists of a sequence of stages called schedulable and observable quanta (SOQ). The 

number of tasks is fixed during an entire stage, and the association between data spaces 

and tasks is fixed one-to-one. Therefore, each stage behaves like a conventional SPMD 

program. Boundaries between stages are defined as schedulable observable points (SOP). 

Reconfiguration of a parallel program can only occur at a SOP. During reconfiguration 

the associations between tasks and data spaces are altered. The stage following a 

reconfiguration point executes on a new configuration of tasks and data until it reaches a 

new SOP. A reconfiguration from one stage to the next may involve a change in the 

number of tasks, a change in the association of data with tasks, or both. 

Each stage of a SOP program consists of four sections: resource, data, control and 

computation. The resource section specifies the number of tasks needed for the execution 

of the stage. This specification is usually in the form of a range of valid number of tasks. 

Once a specific number of tasks is selected for execution of the stage, the data section 

specifies an association between the data space and tasks. The control section specifies 

values for control variables pertinent to the stage. Control variables are used to control 

the flow of the execution inside a stage, which may vary depending on the number of 

tasks and data association. Finally, the computation section specifies the computations 
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and communications that each tasks performs for the execution of the stage. The 

computations and communications are usually steered by the control variables specified 

in the control section. 

2.4 Limitation of Existing Research  

RMS support for adaptive applications has been restricted to malleable 

applications only. Most existing systems assume that the malleable applications can 

operate on any number of processors between a minimum and maximum. This is a strict 

restriction on malleable applications. In practice, from logs of supercomputing centers it 

has been observed that many parallel applications require that the number of processors 

be a power of two. Current resource management systems for adaptive applications do 

not support evolving applications. None of the RMS mentioned in this chapter explicitly 

target the communication and negotiations between the applications and the RMS or 

dynamic resource reallocation, both imperative to support adaptive applications. Another 

limitation of the existing systems is that the RMS and applications are tightly coupled. 

There is no clear separation or interface between them. Data redistribution is performed 

by the RMS. Consequently, applications have to be developed in the framework provided 

by the RMS. 

The scheduling approaches discussed in this chapter use heuristic techniques. So 

far, these scheduling algorithms focused on malleable applications only. Most of the 

algorithms adopted an equipartitioning policy for processor preemption or free processor 

allocations. No effort has been made to compare different preemption or allocation 

policies (for example, preempt resources from longest running job vs. shortest running 
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job). None of the scheduling algorithms have considered evolving applications in the 

workload. The scheduling algorithms assume that the malleable applications will be able 

to use any number of processors between the maximum and minimum number of 

processors. They have not considered negotiations as part of scheduling, which would 

change the scheduling strategy. 

Though the existing programming models can be adopted for developing adaptive 

applications, none of these models address all aspects of adaptive applications. For 

example none of the existing models support the notion of negotiation. Some of the 

existing programming models do not support dynamic task creation and task destroying. 

The main goal of existing research in adaptive parallel systems so far has been 

limited to accommodate a restricted model of malleable application to determine the 

impact of the presence of a malleable workload on system performance. None of the 

research addresses negotiation between the RMS and applications, and none of them 

address evolving applications. No research has been targeted towards determining the 

requirements imposed on the RMS by the presence of adaptive applications in a 

workload. No attempt has been made so far to study and understand the overall model of 

an adaptive parallel system. 
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CHAPTER III  

THE ADAPTIVE PARALLEL SYSEM 

The goal of this dissertation is to model and simulate an adaptive parallel system 

with malleable applications in a distributed computing environment. This goal is 

achieved through the following steps: 1) develop a conceptual model of the system, 2) 

design a mathematical model from the conceptual model, 3) develop a simulator, 4) 

validate the model using the simulator, and 5) gain new knowledge about the adaptive 

parallel system through simulation experiments. Figure 3.1 shows a dependency graph of 

the research methodology, and the main steps are briefly described below. 

1. Conceptual Model: In this stage, an adaptive parallel system has been studied 

carefully to develop an understanding of the system. The important components 

of the system and interactions between them have been identified.  

2. Mathematical Model: From the conceptual model a mathematical model has been 

developed. The components and their interactions are described using variables 

and equations. An adaptive parallel system is highly complex, so that developing 

an accurate and valid mathematical model is extremely difficult, if not 

impossible. Therefore, we have developed a semi-formal mathematical model and 

studied the model by means of numerical simulation.  
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3. Simulator: A discrete event simulator has been developed from scratch to 

simulate the model developed in the previous step. 

4. Validate the Simulator: In this stage, the simulation experiments have been 

conducted using real world data. The goal of the simulations was to validate how 

accurately the model approximates the real system. 

5. Gain New Knowledge: Simulation experiments with synthetic data have been 

conducted in this step. The goal of these experiments was to gain insight about 

adaptive applications, the RMS, and their interrelationship.  

Modeling Process 

Conceptual Model 

Mathematical Model 

Develop 
Simulator  

Simulator 
Validate Model’s capability of 
approximating the real world 

Analyze the behavior of the system 
and gain knowledge about 
properties of adaptive parallel 
systems 

Figure 3.1  Research methodology 
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3.1 Description of an Adaptive Parallel System 

The goal of a Resource Management System (RMS) is to provide support for an 

efficient utilization of computational resources and to resolve conflicts of interests 

between various end users. Typically, this goal is achieved by organizing the workload, 

composed of sequential and/or parallel applications, into queues and by creating a 

schedule. The schedule determines the order in which the applications are executed on 

computing nodes. The schedule is generated according to some system policies. The 

RMS functionality also includes the actual resource allocation (starting the applications) 

or de-allocation (terminating the applications), and reporting the applications’ status 

(pending, running or completed) to the system administrator and to the end users.  If the 

workload contains malleable and evolving applications in addition to rigid and moldable 

applications, a traditional RMS will require additional functionalities to manage adaptive 

applications. In an adaptive RMS, if enough resources are not available while computing 

a schedule, the RMS has the option of preempting resources from running malleable 

applications. When running evolving applications that require additional resources ask 

the RMS for resources, the RMS has to consider these requests while computing a 

schedule. Alternatively, if idle resources are available and there are no pending 

applications or pending resource requests from running evolving applications, the idle 

resources may be allocated to running malleable applications. In order to manage 

adaptive applications, interactions between applications and the RMS are required. To 

determine the functionalities that an adaptive RMS must have, we need to analyze the 
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requirements of an adaptive RMS. One way to analyze its behavior and requirements is to 

develop use cases for an adaptive parallel system.  

3.1.1  Use Cases for an Adaptive Parallel System 

From a high level perspective an adaptive parallel system can be viewed as being 

composed of three actors: users, RMS, and running applications that include malleable, 

evolving, and non-adaptive applications.  One can think of four high-level use cases in an 

adaptive parallel system. 

Submission of a new application 

Completion of a running application 

Idle resources released by a running evolving application 

Additional resources requested by a running evolving application 

The high-level use cases are described below. 

3.1.1.1 Use Case: Submission of a New Application 

Actors: users, RMS, running malleable applications 

Overview: This use case starts when a user submits an application to the RMS for 

execution. The RMS starts the application if resources requested by the application are 

available. If resources are not available, depending on the policy, the RMS either tries to 

preempt resources from already running malleable applications and starts the application 

or puts the application in a pending queue. Running malleable applications may agree to 

release less or more resources than the amount requested by the RMS. For example, an 

application submitted by a user may require eight processors, and there are three idle 
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processors available, while a malleable application is running on eight processors. The 

requirement of the malleable application is that the number of processors be a power of 

two, and the minimum and maximum number of processor requirements are two and 

sixteen, respectively. The RMS may ask the malleable application to release five 

processors. Since the malleable application can operate on only a power of two number 

of processors, it may agree to release only four or six processors. In reply, the RMS may 

order the application to release six processors, and starts the new application on eight 

processors (three idle, and five from the six released processors). This use case ends 

when the submitted application starts execution or it is queued in the pending job queue. 

The use case is depicted in Figure 3.2. 

User 

Submit a new app. 

Preempt resources 

RMS 

Start application 

Pending Q 

Queue 
application 

Running 
Applications 

    

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 

 

  

 

 
 

Figure 3.2  Diagram of interactions for the use case “submission of a new application” 
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3.1.1.2 Use Case: Completion of a Running Application 

Actors: RMS, running application 

Overview: This use case starts when a running application (non-adaptive or 

adaptive) completes its execution. The RMS updates the system state, and depending on 

the policy, it starts one or more pending applications from the queue (if there are any) 

and/or distributes the idle resources among running malleable applications. This use case 

ends when the RMS completes allocating the idle resources released by the completed 

application according to the system policy. Figure 3.3 shows this use case. 

RMS 

Running 
Applications 

Start 
pending 

application 

Complete 
execution 

Allocate resources to 
malleable apps. 

    

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 
 

Figure 3.3  Diagram of interactions for the use case “completion of a running 
application” 

3.1.1.3 Use Case: Resource Released By a Running Evolving Application 

Actors: RMS, running evolving applications 

Overview: This use case starts when a running evolving application releases some 

unutilized resources and informs the RMS. The RMS updates the system state and 
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depending on the policy, starts one or more pending applications from the queue (if there 

are any) and/or distributes idle resources among running malleable applications. This use 

case ends when the RMS completes allocating the idle resources released by the running 

evolving application according to the system policy. This use case is presented in Figure 

3.4. 
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Figure 3.4  Diagram of interactions for the use case “resource released by a running 
evolving application” 

3.1.1.4 Use case: Evolving Application Requesting Additional Resources 

Actors: RMS, running evolving application, running malleable applications. 

Overview: This use case starts when a running evolving application asks the RMS 

for additional resources. If resources are available, the RMS allocates the requested 

resources. If enough resources are not available, the RMS tries to preempt resources from 

one or more running malleable applications and allocates the requested resources to the 

running evolving application. If some, but not all resources are available (even after 
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preemption), the RMS may offer the available resources to the requesting application, 

instead of rejecting its request. The evolving application may or may not accept the 

offered resources. For example, consider an evolving application which requires that the 

number of processors be a power of two and is executing on eight processors. In mid 

execution, the application needs additional resources and asks the RMS for twenty four 

additional processors. The RMS may have only five idle processors available, and it can 

preempt ten more processors from three running malleable applications (one from the 

first, two from the second and seven from the third). Instead of rejecting the request, it 

may offer the evolving application fifteen processors. Since the application can use only 

eight additional processors out of fifteen offered, it may ask the RMS to allocate eight 

additional processors. The RMS may then ask malleable applications one and two to 

release one and two processors respectively, and allocate 8 processors (3 preempted and 5 

idle) to the evolving application. The use case ends when the RMS completes resource 

negotiation with the requesting applications and allocates resources agreed during the 

negotiations, or rejects the request. This use case is presented in Figure 3.5. 
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Figure 3.5  Diagram of interactions for the use case “evolving application requesting 
additional resources” 

  

 

 

 

 

 

 

 

3.1.2  Requirements of an Adaptive Parallel System 

From the use cases described above, it is evident that a complex multi-round, 

negotiation mechanism between applications and the RMS is required to support a wide 

variety of parallel adaptive applications. In an adaptive parallel system, multiple evolving 

applications may request additional resources at the same time, or one request is followed 

by another in a very short period of time. If enough resources are not available to fulfill 

the resource requirement of a new application submitted by a user or a request for 

additional resources by an evolving application, the RMS may have to communicate with 

one or more malleable applications to preempt resources. The RMS must manage these 

communications and negotiations efficiently. Clearly, managing negotiations with 

running adaptive applications is one of the critical requirements of an adaptive RMS. For 
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the negotiation management, an adaptive RMS is required to perform the following 

additional functionalities compared to their counterpart in the traditional RMS: 

Receive requests from running evolving applications. 

Handle multiple simultaneous requests form running evolving applications. 

Carry out negotiations with running adaptive applications. 

Allocate additional resources to running adaptive applications. 

Claim resources from running adaptive applications. 

3.2 Conceptual Model of an Adaptive Parallel System 

From the use cases described in the previous section, a conceptual model of an 

adaptive parallel system has been developed.  The conceptual model has been developed 

using a bottom up approach. First a conceptual model of an adaptive application was 

developed and then gradually the model for other components of the system was 

developed, and finally a conceptual model of the system was developed. An adaptive 

parallel system has three main components: applications, RMS and users. 

3.2.1  Adaptive Applications 

Adaptive applications are capable of expanding by dynamically creating new 

processes and redistributing data among its processes while executing. They are also 

capable of shrinking by self reconfiguration, and dynamically destroying processes. In 

practice, it is possible to create such a parallel application using PVM and MPI, both of 

which support dynamic process creation and destruction. For expansion or shrinkage, an 

adaptive application requires negotiation with the RMS to acquire additional resources 

for expansion or to inform the RMS about the resources it will release.  
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For expansion or shrinkage, an adaptive application must negotiate resources with 

RMS. Consequently, adaptive applications must be able to send negotiation requests to 

the RMS and be able to accept negotiation requests from the RMS. They must also have 

the intelligence to carry out and conclude a negotiation. The conclusion of negotiation 

results in an agreement, which the application must execute by consuming or releasing, 

agreed upon resources. Two parties (the RMS and the application) are involved in a 

negotiation. In the case of malleable applications, the RMS initiates the negotiation by 

sending an offer to the application. In the case of evolving applications, the negotiation is 

initiated by the applications. The negotiation continues by exchanging the offer and 

counter offer between the applications and RMS. For successful negotiations, both the 

application and the RMS must communicate with each other according to some agreed 

upon negotiation protocol. 

Once an agreement is reached between an application and the RMS, the 

application should be able to execute the agreement. The execution of an agreement may 

involve receiving of a list of allocated resources from the RMS, and reconfiguring itself 

to make use of the additional resources. Alternatively, the execution of the agreement 

may involve the application reconfiguring itself, freeing up agreed upon resources, and 

releasing the free resources to the RMS.  

Our model of an adaptive application is based on a master-worker hierarchy employed 

in many data parallel scientific and engineering application. It consists of a coordinating 

process which is the master and a set of computing processes which are the workers. The 

computing processes perform the application specific computation. The coordinating 
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process distributes the initial workloads among workers, monitors worker loads, and 

balances loads among workers. In an adaptive application, the coordinating process is 

also in charge of the resource negotiation with the RMS and execution of the agreement. 

The coordinating process executes the agreement by reconfiguring the running 

application to execute on a changed number of resources. Consequently, execution of an 

adaptive application consists of a number of phases. During each phase the amount of 

resources the application uses remains unchanged. As a result of the negotiation, the 

application may reconfigure itself and enter a new phase where it will be running on a 

different number of resources. 

In general, a parallel application may not be able to reconfigure itself at any 

arbitrary point in time. It may have to wait for a synchronization point where it can 

reconfigure itself by creating/destroying processes, and/or redistributing data. 

Consequently there may be a time gap between reaching an agreement, and execution of 

the agreement by the application. This has a critical implication for the RMS in the case 

of agreements involving resource release, because the RMS requires allocating the 

released resources to other running or pending applications. The application should be 

able to determine when it can release agreed upon resources, and inform the RMS during 

negotiation, so that the RMS can make informed decisions regarding allocating the 

released resources.  

3.2.2 Resource Management System 

In an adaptive parallel system the goal of the Resource Management System 

(RMS) is to provide support for efficient utilization of computational resources and for 
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resolving conflicts between interests of various end users. Typically, this goal is achieved 

by organizing the workload into queues, and by creating a schedule. In order to create a 

schedule, the RMS may need to negotiate with running adaptive applications to allocate 

them additional resources or preempt resources from running applications and allocate 

the released resources to waiting applications. The schedule determines the order in 

which the applications are executed on computing nodes. In an adaptive RMS if enough 

resources are not available while computing a schedule, the RMS has the option of 

preempting resources from running malleable applications. When running evolving 

applications require additional resources, they ask the RMS for resources and the RMS 

has to consider these requests while computing a schedule. Alternatively, if idle resources 

are available and there are no pending applications or pending resource requests from 

running evolving applications, the idle resources may be allocated to running malleable 

applications. The RMS functionality includes actual resource allocation (starting the 

applications), de-allocation (terminating the applications), reallocation (allocating and 

preempting resources to/from running application), and reporting the applications’ status 

(pending, running or completed) to the system administrator and to the end users. An 

adaptive RMS has the several components to achieve the above mentioned 

functionalities. Figure 3.6 shows the component of an adaptive RMS. 
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Figure 3.6  Component of an adaptive RMS 

3.2.2.1 Server 

The server acts as the central coordinator of the RMS. The server is capable of 

accepting events from other components of the RMS and also events from external 
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entities such as users, or running applications. In response to an event (internal or 

external) the server performs some functionality. For performing its functionality the 

server maintains a system status. The system status consists of a list of pending 

applications, a list of running applications, resource information, and a list of resource 

request from running applications.  

Users submit applications for execution to the server. The server updates the 

system state by storing the application’s information in the pending list. It receives 

application completion information from the node controllers, and updates the system 

status by updating the resource information and the running application list. When a 

running evolving application requires additional resources, it sends a request to the 

server. Also when an evolving application has idle resources, it releases idle resources 

and informs the server. In these events the server updates the system status.  

One of the main functionalities of the server is to initiate the scheduling cycle and 

the server decides when to initiate the scheduler. The server initiates scheduling in 

response to a scheduling event (application submission, application completion, request 

for additional resources by running evolving applications, and voluntary resource release 

by evolving applications). When the scheduler is computing a schedule, if the server 

receives another scheduling event, the server may queue the event and initiate scheduling 

later. When the server receives a schedule, it sends the schedule to the dispatcher for 

execution 

47 



www.manaraa.com

    

 

 

 

3.2.2.2 Node Controller 

A node controller manages a computing node and manages applications running 

on that node. The node controllers act as server agents and start new applications on 

behalf of the server. The node controller receives application information and resource 

assignment from the dispatcher, and then launches the application on the assigned 

resources. When an application completes its execution and terminates, the corresponding 

node controller sends an application completion notification to the server.  

3.2.2.3 Scheduler 

The scheduler computes a schedule according to the system policy, the objective 

function, and the current system state. In an adaptive parallel system the scheduler has to 

consider the request for additional resources from running evolving applications in 

addition to the demands of pending applications. If enough resources are not available to 

meet the demands of pending and running evolving applications, the scheduler has the 

option of preempting resources (claiming resources without terminating the application) 

from running malleable applications. Alternatively, if idle resources are available, the 

scheduler can allocate them to running malleable applications. Consequently, computing 

a schedule involves deciding which pending applications to execute, selecting evolving 

and malleable applications to allocate additional resources, selecting preemption 

candidates among malleable applications, and assigning resources to the selected 

applications. If a schedule involves allocation or preemption of resources from running 

adaptive applications, negotiations with those applications are necessary. 
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The computing of a schedule in an adaptive parallel system may be a multistage 

process. The scheduler computes an initial schedule according to the system policy and 

objective function. It negotiates with running applications through the negotiator. 

Depending on the negotiation outcome, the scheduler may need to re-compute the 

schedule, which may require further negotiations. This re-computation of schedule and 

negotiations may go on multiple times until a final schedule is computed. The final 

schedule contains a list of pending applications to be started and a list of agreements with 

running malleable and evolving applications.  

Some component of the RMS must decide when to compute a schedule and direct 

the scheduler to compute a schedule, and send information necessary to compute the 

schedule. In our proposed model, the server decides when to compute a schedule and 

invokes the scheduler. 

3.2.2.4 Negotiator 

It is the RMS agent that carries out the negotiation with adaptive applications. The 

negotiator must know the initial offers that it needs to make to the applications. In 

addition, it must also know the negotiation policy. The negotiation policy dictates how 

the negotiation will proceed and converge, when to accept or reject a counter offer by an 

application, when to terminate a negotiation, and what to do if an application doesn’t 

respond to an offer or counter offer. The negotiator may have to negotiate with multiple 

applications; it may carry out these negotiations with multiple applications 

simultaneously, or sequentially one after another. At the end of negotiations, the 

negotiator sends the outcome of negotiation (list of agreements) back to the scheduler. 
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3.2.2.5 Dispatcher 

Once a schedule has been computed, the server sends the schedule to the 

dispatcher for execution. The schedule consists of three lists: i) a list of pending 

applications to be started, each with a list allocated resources; ii) a list of running 

applications, each with amount of resources to be released; iii) a list of running 

applications, each with a list of additional resources to be allocated to them.  The 

dispatcher contacts the running applications which are required to release resources and 

get the list of released resources from applications. The dispatcher communicates with 

running applications which are required to expand and sends them the list of additional 

resources allocated to them. It sends information of pending applications to be started to 

the assigned node controllers, which in turn start application on allocated resources.  

3.2.3 Users 

Users submit their application for execution on the cluster. The user provides all 

the information required by the RMS to execute their application. The information 

includes the executable name, resources required for the application, and how long the 

resources are required. Users may also provide additional application constraints such as 

a deadline by which the application must complete execution, the minimum wall clock 

time after which the application must start, or the minimum and maximum number of 

processors that the application can utilize etc. From the RMS points of view, the 

applications submitted by the users are independent of each other. A set of applications 

submitted by different users over a certain period of time is called workload. 
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3.2.4 Relationship between the Components 

The conceptual model depicting the components of an adaptive parallel system 

and their association is shown in Figure 3.7. The association between the components in 

the conceptual model can be one to one (i.e. at a particular point in time one instance of a 

component interacts with exactly one instance of another component), one to many (one 

instance of a component interacts with one or more instances of another component), or 

many to one (one or more instances of a component interacts with exactly one instance of 

another component). 

Multiple users may submit applications for execution to the servers at a discrete 

point in time. As a result, the association between users and server is many to one. There 

are multiple node controllers in the system, each managing a single node, and the 

association between the server and the node controller is one to many. One or more 

running evolving applications may send requests for additional resources to the server at 

a particular moment in time. The association between running applications and the server 

is many to one.  

Figure 3.8 shows the collaboration diagram of the conceptual model for an 

adaptive parallel system. Each object in the model performs some functions and interacts 

with other objects by exchanging messages. Objects have one or more inputs from other 

objects and have one or more outputs to other objects. To perform its functions, an object 

may be required to maintain some internal information apart from the inputs from other 

objects. Objects perform well-defined functions in response to inputs from other objects.  
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 Figure 3.7  Conceptual model of an adaptive parallel system 

  

 

 
The model can be considered as an event driven model. An input is an event, and 

an object performs a certain function in response to an event and may generate one or 

more events for other objects. Some events such as submission of a job, completion of 

job, request for negotiation, and release of resource by an evolving job, can occur at any 
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point in time. Some events occur in response to other events or execution of some 

functionality. The server, the scheduler, the negotiator, the dispatcher, and the node 

controllers represent the RMS. The objects user and running jobs are external to the 

RMS. 

Table 3.1 shows the object relationship and information flow among objects. The 

first row of the table lists the functionalities that an object performs. The second row 

shows the information required to perform the functionalities.  Each entry in the cells 

after the second row shows the information exchange between the objects in the column 

heading and the row heading of the cell. The cell entry is the output of the row object to 

the column object. An empty cell indicates the information exchange between the objects 

of the column and those of the row. 

After the second row, the contents of a row show the output of an object in the 

row heading, and contents of the columns show the inputs to the object in the column 

heading. 
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Table 3.1   Object relationship and information flow 
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 Neg. Request 
Released resource 
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3.3 Mathematical Model 

The mathematical model describes the conceptual model in terms of variables and 

equations. The goal of the mathematical model is to provide qualitative and quantitative 

information on system and application performance for a given adaptive parallel system 
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(a given workload and a RMS). While developing the mathematical model, we need to 

represent the objects, procedures, and the information flow described in the conceptual 

model presented in section 3.5 in terms of variables and equations.  As described in the 

previous sections, an adaptive parallel system is a very complex system. In this 

dissertation we have attempted to model and simulate an adaptive system with rigid and 

malleable applications only. Once a model for an adaptive system with malleable 

applications is developed and validated, it can be enhanced to incorporate evolving 

applications in the future. Before developing the mathematical model, we will define the 

assumptions that have been made about the system in section 3.3.1. 

3.3.1 Assumptions 

For developing the mathematical model, and subsequently to develop the 

simulator, we made the following assumptions about an adaptive parallel system. 

1. All applications in the workload are parallel applications.  

2. Workload consists of rigid and malleable applications only. 

3. Sequential computation is negligible compared to parallel computations. 

4. The computation is linearly distributed over time. 

5. Only processors are considered as resources. 

6. The negotiator performs negotiations sequentially one after another. 

7. Malleable applications perform negotiation in a non blocking manner. 

That is while the coordinating process is engaged in negotiation, the 

computing processes can continue with computation 

8. Adaptation cost varies from application to application. 
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9. Adaptation cost is proportional to the change in the number of processors. 

10. Adaptation cost does not vary from shrinkage to expansion. 

3.3.2 Workload 

There are two trends in generating the workloads among the researchers working 

in the resource management and scheduling communities. One trend is to use actual 

workload data derived from job traces from supercomputer centers [50][57]. The other 

trend is to generate workloads from workload models [51][52].  As discussed in Chapter 

II, using a workload model has advantages over an actual workload derived from job 

traces. 

For the simulation experiments presented in chapter VI, we have used the 

workload data generated from a workload model. There are several validated workload 

models available for rigid applications [52][58][59][60][61]. Currently none of the 

models available are able to generate a workload containing rigid as well as malleable 

applications. These models provide arrival time, execution time, and number of 

processors required for a rigid workload. Instead of developing a model from scratch we 

have decided to adopt one of the validated models for rigid application and extend it to 

accommodate malleable applications. 

For simulation experiments in this research we need realistic workload data. The 

reasons for the need of realistic workload data are as follows. i) To validate the simulator 

and consequently the model. If the model is validated against realistic data we have more 

confidence about the models capability of approximating a real adaptive parallel system. 

ii) If realistic data is used to investigate the impact of model parameter of system 
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performance, then we will have more confidence on the experimental results and 

subsequent knowledge gained from the experiments.  

In this research we have selected the workload model by Allen B. Downey [52] 

for modification to generate a malleable workload. There are three primary reasons for 

selecting Downy’s model. First, Downey’s model has been validated against workload 

logs from San Diego Super computer center (SDSC) and Cornell Theory Centers (CTC), 

and it can generate realistic data. Second, the model has been used by several researchers 

to generate workloads for their experiments. Third, an open source implementation of 

Downey’s model is available which makes it easier to extend and modify.  

Downy’s model takes the maximum number of processors that an application can 

have, the minimum and maximum runtime of applications in the workload, and the 

number of jobs to be generated as input. The model provides the arrival time, the number 

of processors required, and the run time for each application in the workload. A model 

for malleable application must able to generate a workload with rigid as well as malleable 

applications. To accommodate malleable applications the existing Downy’s model 

required three modifications: decide how many of the applications should be malleable, 

what should be the distribution of malleable applications in the workload, and what will 

be the flexibility range (minimum and maximum processors) of each malleable 

application. The modified model has four additional parameters to convert the rigid 

applications generated by Downey’s model into malleable applications. The parameters 

are the number of malleable applications as percentage of total number of applications in 
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the workload, the distribution of malleable applications in the workload, and the 

minimum and maximum number of processors that a malleable application can have.  

3.3.3 Application 

The execution of a malleable application consists of phases. Within a phase, the 

number of processors used by the application remains unchanged. The coordinating 

process of the application carries out negotiation with the RMS and enters into an 

agreement which involves either releasing some processors or receiving some additional 

processors. The application executes the agreement by reconfiguring itself. The 

reconfiguration involves redistribution of data, and the consumption or the release of 

processors. As a result of reconfiguration, the application enters into a new phase of 

execution. There is an additional cost of reconfiguration at each phase change which is 

called adaptation cost. The adaptation costs bring overhead to running malleable 

applications. 

Let the total computation of a malleable application be W and it takes td time to complete 

the computation on pd processors. Then: 

W = pd × td  …………………………………………..(3.5) 

Let the application consist of n phases and uses p1, p2, … pn  processors in 
phases 1, 2, … n respectively. 

Let the execution times of phases 1, 2, .. n be t1, t2, … tn, respectively 

Let the adaptation costs for the phases be ca1, ca2, … can, respectively. 

Then, the remaining computation after phase 1 is:  
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Wr1 = W −W1 …………………………………………(3.6) 

Where W1 is the computation completed in phase 1 

Wr = p × t − p × t …………………………(3.7)1 d d 1 1 

If there is no phase change after phase 1, then the time required to complete the 

remaining computation Wr1 after phase 1 is: 

Wr tr1 = 1 ...........................................................(3.8)
p2 

( pd × td − t1 × p1 )or tr = 1 p2 

If the application consists of three phases only then the remaining computation after 

phase 2 is 

Wr = p × t − p × t − p × t2 d d 1 1 2 2 

or Wr2 = Wr1 − p2 × t2  ……………………….(3.9) 

And the time required to complete the remaining computation Wr1 after phase 2 is 

Wr2tr2 = ……………………………………(3.10)
p3 

( pd × td − t1 × p1 − t2 × p2 )or tr = 2 p3 

In general, after the ith phase remaining computation 

m 

Wri = pd × td −∑ pi × ti …………………..(3.11) 
i=1 

or Wr = Wr − p × t ……………………..(3.12)i i−1 i i 
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And the time required to complete the remaining computation Wri after phase i is 

Writri = …………………………………..(3.13)
pi+1 

Wri − p × t−1 i itri = …………………………(3.14)
pi+1 

If the application consists of n phase the execution time of the application is 

Wrn−1t = (t + C ) + (t + C ) + ⋅ ⋅ ⋅ ⋅ ⋅ + (t + C ) +  …. (3.15)1 a1 2 a2 n−1 an−1 pn 

3.3.4 Negotiation 

If the workload consists of malleable and rigid applications only, all negotiations 

are initiated by the RMS. The negotiation cost has two components: the communication 

time required to send and offer or counteroffer from the RMS to the application and vice 

versa, and the time required by the application or RMS to make a decision. In a cluster 

environment where load is controlled, it is reasonable to assume that the communication 

cost between the RMS and the application do not vary from one negotiation to another. 

Since the RMS knows the global system state and it follows a specific system policy, we 

assumed that the decision making time for the RMS does not vary from negotiation to 

negotiation or from application to application. However, since each application is 

different, the time required to respond to an offer from the RMS may vary from 

application to application.  For most applications, the response time is low and for few 

applications it may be high. In addition, the number of rounds in each negotiation may 

vary from application to application and negotiation to negotiation.  

61 



www.manaraa.com

    

 

 

 

 

 

 

From the above discussion it is apparent that the negotiation cost depends on the 

communication time, the response time and the number of rounds required to conclude a 

negotiation. We have modeled the negotiation cost by aggregating these factors into a 

single parameter Cn. We have chosen two models for the variation of the negotiation 

cost. In the simpler model the variation is zero. That is, for a given workload, the 

negotiation cost is constant. In the other model, negotiation cost varies from application 

to application and negotiation to negotiation, and it is low for most applications and it 

maybe high for a few applications. In this model the negotiation costs follow a random 

ramp distribution. The probability decreases linearly as the negotiation cost increases. 

3.3.5 Adaptation Cost 

An application executes an agreement by shrinking or expanding. Shrinking 

involves redistributing data, destroying processes and releasing idle processors. 

Expanding involves spawning processes on the additional allocated processors and 

redistributing data. The cost of data redistribution depends on application’s business logic 

and data structures. As a result, it varies from application to application. In addition, for 

the same application the redistribution cost depends on the variation of the number of 

processors that the application is using before and after adaptation. We have assumed that 

for a given application, the adaptation cost is linearly proportional to the change in 

number of processor. 
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We have modeled the adaptation cost of an application for change in one 

processor by single parameter C. After execution of an agreement if an application 

changes the number of processors from p1 to p2 the adaptation cost is 

……………………………….. (3.16) 

Like the negotiation cost, the adaptation cost is chosen in two ways to model the 

variation of adaptation cost per processor from application to application. In the simpler 

model the variation is zero. Therefore, for a given workload the cost is constant. In the 

other model, the adaptation cost varies from application to application, and it is low for 

most applications and high for a few applications. Parallel applications which have low 

adaptation cost are most amenable to conversion into malleable application; 

consequently, it is reasonable to assume that for most applications the adaptation cost will 

be low. For the adaptation cost we have adopted the same distribution as negotiation cost.  

Ca = C × p1 − p2

3.3.6  Performance Metrics 

The average turn around time has been selected as a metric for measuring 

application performance. Utilization has been selected as a metric for measuring system 

performance. The turn around time (TAT) for an application is defined as the time taken 

from submission of an application to the system until its completion of execution. The 

average turn around time is defined as the arithmetic mean of the turn around time of all 

applications in the workload. The schedule span is defined as the time between the arrival 

of the first application in the system and the completion of the last application for a given 
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workload. Utilization is defined as the fraction of total available CPU cycles during the 

schedule span that have been used by all the applications in the workload. 

Let us assume that for a given workload W the 

Total number of applications is:  m 
Arrival time of application i is ta

i 

Start time of application i is: ts
i 

Completion time of application i is:  tc
i 

Execution time of application i is tex
i = tc

i - ts
i 

Arrival time of first application is:  ta
1 

Completion time of last application is:  tc
m 

Total number of processors in the system is: p
 Then, 

The waiting time for application i is: tw = (ts
i – ta

i) 

The turn around time for application i is: TAT = (tc
i – ta

i)  …………………..(3.1) 

The average turn around time for workload W is 

m 

<Avg. TAT> = 1/m Σ (tc
i – ta

i)  .………………………(3.2) 
i = 1 

The schedule span is: 

ss = (tc
m – ta

1)  ……………………………………(3.3) 

The cost of an application is defined as total the CPU time consumed by an application 

during its execution. For example, if a rigid application runs on 4 processors for 100 

seconds the cost of the application is 4 x 100 = 400 seconds, or if a malleable application 

runs on 4 processors for 100 seconds, and then on 8 processors for 100 seconds, then the 

cost of the application is 4 x 100 + 8 x 100 = 1200 seconds. 

Let the cost of an application i be Ci
app 

The total processor cycle available during the schedule span is (p*ss). 

64 



www.manaraa.com

    

 

      
  

               
  

 
 

 

 

 

 

m 

Therefore the utilization is: U = Σ Ci
app  / (p*ss)  .……………(3.4) 

i = 1 

To compute performance metric the arrival time, the start time, and the 

completion time is needed for each application in a workload. Numerical simulation of 

the mathematical model described in the previous sections will provide these values. The 

workload model provides the arrival time. Scheduling algorithm and negotiation model 

provide the start time. Application model and adaptation model provide the completion 

time. From the numerical simulation the performance metric can be computed for a 

workload. 

3.4 Summary 

We have described an adaptive parallel system and a conceptual model for an 

adaptive parallel system. We have developed a semi-formal mathematical model of an 

adaptive parallel system with malleable applications which is numerically simulated with 

a discrete event simulator presented in chapter IV. Utilization and average turn around 

time has been selected as measure of performance for RMS and application respectively. 

A malleable application consists of phases. During a phase, a negotiation occurs 

between a running malleable application and the RMS. If there is an agreement between 

the application and the RMS, then at the phase boundary the application adapts and 

change the number of processors utilized. To calculate the performance metric for a given 

workload, we need to know the arrival time, the starting time and the completion time of 

each application in the workload. The workload generated from the workload model 

described in section 3.4.3 provides the arrival time, processor requirements, and total 
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 computation of each application. The numerical simulation of a workload provides the 

start time for each application. During a simulation the remaining computation time after 

a phase change can be predicted using equation 3.14.  During a simulation the scheduler 

determines whether a running application will go through a phase change. 

Chapter IV describes a discrete event simulator developed for numerical 

simulation of an adaptive parallel system with malleable application.  A prototype 

implementation of an adaptive RMS capable of handing malleable application has also 

been presented in chapter IV. 
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CHAPTER IV  

SIMULATOR FOR AN ADAPTIVE PARALLEL SYSTEM 

In Chapter III a model for an adaptive parallel system has been presented. In this 

chapter, we present the design and implementation of a discrete event simulator of the 

model discussed in chapter III.  This chapter also presents the implementation of a 

prototype system for an adaptive parallel system. The experimental results with the 

prototype system are discussed in this chapter. 

Simulation is one of the most widely used scientific techniques for studying a 

system [56]. A system is defined to be a collection of entities, e.g. people, machine etc. 

that act and interact together towards the accomplishment of a goal [64]. The entities of 

the system are: the users, the resource management system, and the running applications. 

An adaptive parallel system can be considered as a discrete event system because events 

such as the submission of an application or the completion of an application occur at 

discrete points in time. As a result, the state of the system changes at discrete points in 

time. 

4.1 Discrete Event Simulator 

Although discrete event simulators are used to simulate different type of real 

world system, they all share a number of common components and logical 

67 



www.manaraa.com

    

 

 

 

 

 

 

 

organization[56]. The following components are present in most discrete event 

simulators. 

System State:  A collection of variables called state variables which describe the 

state of a system at a particular time. 

Simulation Clock: Because of the dynamic nature of the simulation, a mechanism 

keeping track of simulation time is required, and a mechanism is required to advance the 

time as the simulation progresses. A variable that contains the current value of simulation 

time is used to keep track of time. There are two main mechanisms of advancing the 

simulation clock: the fixed-increment time advance and the next-event time advance. In 

fixed-increment time advance, the simulation clock is advanced by a fixed value Δt. After 

each increment, a check is made whether any events have occurred during the previous 

interval Δt. If any events have occurred, they are processed and the system state is 

updated accordingly. In next-event time advance approach the simulation clock is 

advanced to the time of occurrence of the next event, and the event is processed. 

Event List: A list containing the events and time when they will occur. The list is 

usually sorted in increasing order of event time. 

Statistical Counter: Contains variables used for storing information about system 

performance. 

Initialization Routines: Subprograms to initialize the simulation model at time 0. 

Timing Routine: A subprogram that determines the next event time and advances 

the simulation clock to the next event time. 
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Event Routines: Subprograms that process events and update the system state 

when an event occurs. In general there is at least one subprogram for each type of events. 

Report Generator: Subprograms that computes estimates of the desired 

performance measures at the end of simulation. 

Main Program: The subprogram that coordinates the simulation. It is also known 

as the simulation executive. The main program invokes the timing routine to determine 

the next event time, and it invokes the corresponding event routine to update the system 

state. 

The flow of control and relationship among the components are shown in figure 

4.1. At time t = 0 the main program invokes the initialization routine, which sets the 

simulation clock to zero, initializes the state variables and creates the event list. The 

initialization of state variables and the event list may involve reading simulation inputs 

from a file. After the control is returned to the main program, it invokes the timing 

routine to determine the next event type, and then it invokes the appropriate event routine 

to process that event. Event routines generally perform three types of activities, i) 

updating the state variables, ii) updating the statistical counter, and iii) generating future 

events and inserting them into the event list. The invoking of the timing routine and of 

the event routine is repeated until all the events in the event list is processed. The main 

program then calls the report generator to compute the performance indicator and 

generate a report. 
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Figure 4.1  Flow control of discrete event simulator 

    

 

 

 

4.2 Simulator for Adaptive Parallel System 

A simulator for the numerical simulation of an adaptive parallel system such as 

the one described in chapter III has been developed from scratch. We have examined a 

few open source off the shelf simulators. None of them were found to be suitable for our 

simulation purpose. Modifying them to adapt for our purposes seemed to be more work 

than developing a new one from scratch. Figure 4.2 shows the logical organization of the 

simulator. The simulator is composed of the following major modules: the executive, the 

initialization routine, the scheduler, the negotiator, and the dispatcher. In addition, the 
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simulator uses several data structures which constitute the system state. The following 

subsections briefly describe the modules of the simulator. 

4.2.1  System State 

The system state contains the several data structures representing the state of the 

adaptive parallel system during a simulation. The system state contains the following data 

structures. 

Event List: This list contains the events that will occur during the simulation. 

Each entry in the list represents an event. Each event has a type, time of occurrence, and 

the job id with which the event is associated. Our simulator handles only two types of 

events: a job submission event and a job completion event. The event list is created by 

the initialization routine. The event list is updated by the executive and the dispatcher. 

The event list is sorted in increasing order of event time. 

Pending Job List: This list contains information about all the applications in a 

given workload. The list is sorted in order of job arrival time. The initialization routine 

creates the pending job list. Each entry of the list contains the following information: the 

job id, the job type (rigid/malleable), the arrival time, the default processor requirement, 

the execution time on the default number of processors, the minimum and the maximum 

processor that the job can utilize. 

Running Job List: This list contains information about all the jobs that are 

currently running. In addition to the information of pending job, each entry in the list 

contains the following information: the start time, the number of processor currently 

allocated, the amount of work remaining after the last phase change, the time when last 

phase change has occurred. The list is created and updated by the dispatcher. 

Job Completion List: This list contains information about all the jobs that have 

completed their execution. In addition to the information present in an entry in the 

running job list, each entry in the list contains the completion time. The list is created by 

process completion module. The performance metrics are calculated from this list. 
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Figure 4.2  Organization of the simulator for an adaptive parallel system 

    

 

 

 

 

 

 

 

  

 

System Parameters: The parameters are: the minimum negotiation time, the 

maximum negotiation time, the percentage of negotiation success rate, the minimum 

adaptation cost, the maximum adaptation cost, the total number of processors in the 

cluster, the name of the workload file, and the name of the statistic file.  These values are 

initialized by initialization routine.   

4.2.2  Executive 

The executive is the coordinator of the simulator. It coordinates the other modules 

and drives the simulation. The algorithm and flow diagram for the executive are show in 

Figure 4.3 and Figure 4.4. The coordinator first calls the initialization routine which 

initialized the system state.  It then enters into a loop. Inside the loop it removes the next 

event from the event list and processes the event by invoking other modules. While 
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Input: None 

Output: A file containing the statistics of the simulation run 

1. Initialize 

2. while event list not empty 

3. Remove next event from event list 

4. if event = job completion 

5. move completed job from running list to completion list 

6. update system state 

7. if event time <= simulation clock 

8. go to step 3. 

9. simulation clock ← event time 

10. schedule ← scheduler(System State) 

11. agreement ← negotiator(proposed agreement) 

12. update schedule 

13. simulation clock = simulation clock + negotiation overhead 

14. dispatcher(schedule) 

15. end while 

16. calculate statistics 

17. write statistics to output file 

Figure 4.3  Algorithm for the simulation executive 

    

 

 

processing an event, the executive updates the simulation clock and the system state. This 

process continues until the event list is empty and the simulation ends. 
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Figure 4.4  Flow diagram for the simulation executive 
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Input: workload file, system parameter file 

Output: Updated system state. 

1. Read workload file 

2. Create pending job list 

3. for each job in the pending list 

4. create an event 

5. event type ← job submission 

6. event time ← arrival time 

7. id ← job id 

8. insert event in event list 

9. end if 

10. sort event list on event time 

11. sort pending list on arrival time 

12. read system parameter from parameter file 

13. simulation clock ← 0 

14. end 

Figure 4.5  Algorithm for the initialization routine 

    

 

  

 

 

 

4.2.3 Initialization Routine 

The initialization routine is invoked by the executive. It reads the workload and 

parameter files and initializes the system state. It also sets the simulation clock value to 

zero. Figure 4.5 show the algorithm for initialization routine.  
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4.2.4 Scheduler 

The scheduler module is invoked by the executive. The scheduler creates a 

schedule and returns the schedule to the executive. A schedule consists of two data 

structures: a jobs to start list and a negotiation proposal list. Each entry in the jobs to start 

list contains the job id of a pending job and the number of processors allocated to it. Each 

entry in the proposal list contains the id of a running malleable job, an indicator whether 

the job needs to shrink or expand and the number of processors the job needs to release or 

receive. The algorithm and flow diagram for scheduling are shown in Figure 4.6 and 

Figure 4.7. The scheduler creates the schedule according to the following policy. 

First Come First Serve: Pending jobs are scheduled according to the arrival time. 

Maximum fit: Schedule as many job as possible in a scheduling cycle. This is 

done by allocating the minimum number of processor for pending malleable jobs. 

Pending Job Priority: Pending jobs are given priority over malleable jobs. If idle 

processors are available the scheduler tries to schedule pending jobs first. If enough idle 

processors are not available to schedule pending jobs the scheduler tries to preempt the 

required number of processors from running malleable jobs. If idle processors are 

available after scheduling pending jobs, or there are no pending jobs then only the idle 

processors are allocated among running malleable jobs. 

Shrinkage and Expansion: Preempt processors starting with the running malleable 

job which started earliest, then from the next one and so on. Preempt the maximum 

possible number of processors from jobs starting with the first. This policy reduces the 

number of negotiations required. For example, assume eight additional processors are 

required to schedule a pending job and there are four running malleable jobs each of 

which can release five processors. The scheduler will decide to preempt five processors 

from the first job and three from the second job, which will require negotiation with two 

applications, as opposed to preempting two processors from each job, which will require 

negotiation with four jobs. Allocation of idle processors among running jobs adopts the 

same policy.  
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The jobs to start list is created in two steps. In the first step, an initial list is 

computed according to the maximum fit policy. If after the first step idle processors are 

available, they are allocated to the jobs in the initial list on a FCFS basis in the second 

step. For example, assume that there are ten idle processors and three pending malleable 

jobs. Each of the malleable jobs can run on any number of processors between 4 and 12. 

In the first step, job one and jobs two will be allocated 4 processors each following the 

maximum fit policy. Job three cannot be included in the list because it requires a 

minimum of four processors and there only two processors available. Now in the second 

stage, the two remaining processors will be allocated to job one. The final jobs to start list 

will contain job one with six processors and job two with 4 processors.   

If idle processors are available after refining the initial list, and there are pending 

jobs and running malleable jobs, then the scheduler tries to schedule pending jobs by 

preempting processors from running malleable jobs. The scheduler first computes the 

maximum number of processors that can be preempted from running malleable jobs. The 

scheduler then tries to allocate processors to pending jobs according to the maximum fit 

policy, assuming that the preemptable processors are available. If idle processors are 

available after refining the initial list, and pending jobs cannot be scheduled by 

preempting processors from running jobs, then the idle processors are allocated to 

running malleable jobs on a first start first get basis. The scheduler does not actually 

preempt processors from running jobs. It just makes the decision on which pending jobs 

to start, which running jobs to shrink or expand. In other words it proposes a schedule but 

does not execute a schedule. 
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Input: System State 

Output: Schedule 

1. create initial schedule 

2. Refine schedule 

3. if idle processor > 0 and running malleable > 0 

4. if no. of pending job > 0 

5. calculate preemptable processors 

5. schedule pending job 

6. create proposal for processor preemption 

7. end if 

8. create proposal for processor allocation to running job 

9. end if 

10. return schedule 

Figure 4.6  Algorithm for the scheduler 

   

 

  

 

 

  

 

4.2.5  Negotiator 

The module negotiator simulates the negotiation between the RMS and the 

applications. The negotiator is invoked by the executive. The input to the negotiator is a 

proposal list and the output is an agreement list and the negotiation overhead. Each entry 

in the proposal list contains a job id, a shrink or expansion indicator, the number of 

processors to be released or received by the running malleable jobs, and a negotiation 

status field. The algorithm and flow diagram for the negotiator are shown in Figure 4.8 

and Figure 4.9. The negotiation is carried out sequentially one after another. At the 

beginning of the negotiation cycle, the negotiation overhead is set to zero. The 

negotiation overhead is the sum of costs of all negotiations carried out in a negotiation 

cycle. To determine the negotiation cost, the negotiator invokes a routine with maximum 

and minimum negotiation costs as parameters. The routine stochastically selects the 

78 



www.manaraa.com

negotiation cost from a random ramp distribution. Whether the negotiation succeeded or 

failed is determined stochastically. In case of shrinkage the agreed number of processor is 

determined by randomly selecting an integer between 0 and the maximum number of 

processors that the job can release. In case of expansion the agreed number of processor 

is determined by randomly selecting an integer between 0 and the maximum number of 

additional processors that the job can consume. 
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Return schedule 

Figure 4.7  Flow diagram for the Scheduler 
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Input: Proposal list 

Output: Agreement 

1. overhead ← 0 

2. while proposal list not empty 

3. get next proposal 

4. overhead ← overhead + get negotiation cost(min. neg. cost, max. 

neg. cost); 

5. negotiation status ← get negotiation status(success rate) 

6. processor ← get negotiated processor no() 

7. update agreement list 

8. end while 

6. return negotiation overhead and agreement list 

Figure 4.8  Algorithm for the negotiator 

    

 

 

 

 

 

 

4.2.6  Dispatcher 

The dispatcher executes a schedule. The algorithm and flow diagram for the 

dispatcher are shown in Figure 4.10 and Figure 4.11. The schedule consists of two lists: 

the jobs to start list and the agreement list. The executive invokes the dispatcher by 

passing the schedule. The dispatcher first executes the agreements in the agreement list. It 

removes the next agreement from the agreement list. It computes the remaining 

computation Wri of the application after adaptation according to equation 3.12. It 

computes the time required to finish the remaining computation tri according equation 

3.13. The dispatcher then stochastically determines the cost of adaptation by invoking the 

get adaptation routine. It then computes the new completion time of the running 

malleable jobs. It updates the event list by changing the corresponding event time to new 
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Compute negotiation cost 
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Determine negotiation status 
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Update agreement list 

Return agreement list 

Stop 

Figure 4.9  Flow diagram of the negotiator 

    

 

 

completion time. The dispatcher also updates the current allocated processors in the 

running job list and the number of idle processors available. 
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Input: schedule (jobs to start list and agreement list) 

Output: updated system status 

1. while agreement list is not empty 

2. remove next agreement 

3. Wri ← Wri-1 – pi*ti 
4. tri ← Wri/pi+1 

5. adaptation cost ← get adaptation cost(min. adapt. cost, max. adapt. 

cost) 

6. tc ← simulation clock + adaptation cost + tri 

7. update job completion event in the event list 

8. update job info in running job list 

9. update available processor 

10. end while 

11. while jobs to start list not empty 

12. remove next job 

13. Wr ← (pd*td) 

14. tc ← simulation clock + Wr/p1 

15. ts ← simulation clock 

16. insert job completion event in the event list 

17. move job from pending list to running job list 

18. update available processor 

19. end while 

20. sort event list 

Figure 4.10 Algorithm for the dispatcher 

    

 

 

 

After executing all the agreements, the dispatcher executes the jobs to start list. 

For each job in the list it computes the completion time of the job, creates a job 

completion event and inserts the job completion event in the event list. It also moves the 

job from the pending list to running job list and sets the start time and current allocated 

processor. The dispatcher then sorts the event list in order of event time. 

82 



www.manaraa.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  
 

 

 

 

 

 

 Is jobs to
start list 
empty?

Start 

No 

Yes Is 
assignment 
list empty? 

Remove next assignment 

Compute adaptation cost 

Compute new completion time 

Update running job list 
Update event list 

Update processor available 

Using negotiation info & 
probability distribution 

From application model 

Figure 4.11  Flow diagram for the dispatcher 
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4.2.7  Implementation 

The simulator has been implemented as a single program with one thread of 

execution. All the modules were implemented as separate subroutines. The simulator was 

implemented in C on a Linux platform. During the development of the simulator, the 

incremental development model was followed. As each increment was built the 

components underwent thorough unit testing. Each developed increment was 

continuously integrated with the previous one and an integration test was performed. 

4.3 Prototype Resource Management System 

We have developed a prototype resource management system capable of handling 

malleable jobs. There were three objectives for the development of the prototype RMS. 

The first objective was to use it as a tool to study an adaptive parallel system. The second 

objective was to get an idea about the realistic values of system parameters such as 

negotiation costs, adaptation costs etc. The third goal was to generate some real world 

data which could be used to validate the simulator described in the previous section. 

Developing a full blown RMS and malleable applications with different characteristics is 

labor intensive, time consuming and a costly task. We have implemented the prototype 

RMS with minimum functionality and implemented one malleable application. We took 

the path of least resistance to get to a working system, so that we can use it to study an 

adaptive parallel system and generate some real data.  The implementation of the 

prototype system and the results of experimentation with it are discussed in this section. 

In order to manage malleable applications, interactions between the RMS and the 

applications are required. Because of the resource utilization pattern of malleable 
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Figure 4.12 Architecture of the prototype RMS. 
 

  

 

applications, a simple accept/reject type of communication with the RMS is not enough 

[16]. Managing negotiations with running malleable applications is one of the critical 

requirements of an adaptive RMS. For such negotiation management, an adaptive RMS 

must perform the following additional functionalities compared to a traditional RMS: i) 

carry out negotiations with the running malleable applications; ii). allocate/claim 

resources to/from the running malleable applications; iii). make decisions to allocate idle 

resources among the running malleable applications; and iv) choose resource preemption 

candidates among the running malleable applications. 
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4.3.1  Architecture and Implementation 

Figure 4.12 shows the architecture of the RMS for malleable applications, based 

on the requirements mentioned above. The RMS has two parts: a server and node 

controllers. The server is responsible for gathering information about the available 

resources, accepting jobs from the users, organizing those jobs in queues, and initiating a 

schedule cycle. Once a schedule is contrived, the server contacts the individual node 

controllers, which place applications into execution. There is one node controller per 

computational node. Each controller acts as an agent of the server and starts and controls 

applications on the nodes. 

The server consists of the following components: the event handler, the controller, 

the scheduler, the negotiation manager and the dispatcher. The event handler and 

controller are two separate threads of execution that are running concurrently. The server 

also manages information about the system through a data structure called system state. 

The system state maintains information about the current state of the RMS. It consists of 

following information: i) pending job queue - list of jobs submitted by users organized in 

a FIFO Queue, ii) list of running rigid jobs, iii) list of running malleable jobs, iv) resource 

information, and v) pending event queue. The event handler accepts events external to 

server and updates the system state. Currently the event handler responds to three types 

of events: job submissions by users, job completion notifications by the node controllers 

and registrations by running malleable jobs. Out of these events, job submission and job 

completion are scheduling events, meaning that the server initiates a scheduling cycle in 

response to these events. 
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A user submits a job for execution by submitting a script containing information 

about the application to executed. Jobs are submitted through a client program. In the 

submission script the users have to mention the job type (whether a job is rigid or 

malleable), and the minimum and the maximum processors requirement of the job (in 

case of malleable job). The event handler receives the job information from the client 

program and inserts the job information in the pending job queue; it also pushes the job 

submission event in the event queue. When a running job completes its execution, the 

node controller that had started the job sends a job completion notice to the event handler. 

The event handler updates the resource information, running job list, and pushes a job 

completion event in the event queue. 

When a malleable job starts execution, it first opens a socket and sends the host 

and port information to the event handler. This process is called job registration. When 

the event handler receives this information it stores this information in the running 

malleable job list. The purpose of registration is to enable communication between the 

server and running malleable application, whenever expansion or shrinkage of running 

malleable jobs is required. 

Whenever there is a scheduling event in the event queue, the controller removes 

the events and initiates a scheduling cycle by calling the scheduler. There can be two 

events (ex. a job submission and running job completion at the same time) arriving at the 

same time in the event queue. In such a case, the controller component of the server 

removes both the event from the queue and initiates a single scheduling cycle. The 

scheduler computes a schedule and sends a list of pending jobs to be started with logical 
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processor assignment to the controller. The controller sends the list of jobs to be started to 

the dispatcher. 

The scheduler computes a schedule based on system state and scheduling policy. 

A schedule consist of three lists: a list of pending jobs to be started with logical processor 

assignment, a list of running malleable jobs with number of processor to be releases by 

shrinking, and a list running malleable jobs with number of additional processors 

allocated to them for expansion. After a scheduling cycle, all or any of these lists can be 

empty. The scheduling policy adopted in present RMS is FCFS (First Come First Serve), 

and pending new jobs are given priorities over running malleable jobs.  

During a scheduling cycle, first a jobs to start list is created by allocating a 

minimum number of processors to the pending jobs as long as resources are available. If 

enough processors are not available to schedule pending jobs, the scheduler makes 

decision to preempt processors from running malleable jobs (if there are any) in order to 

schedule pending jobs. The scheduler computes the maximum number of processors that 

can be preempted from all running malleable jobs and tries to schedule as many pending 

jobs as possible. Once scheduling decisions of pending jobs are made, the scheduler 

selects the preemption candidates among the running malleable jobs.  The required 

number of processors is preempted starting with the maximum possible number of 

processors from the running malleable job that has started the earliest, continuing with 

next malleable job and so on. If idle processors are available and no jobs are pending, or 

idle processors are not enough to fulfill the minimum processor requirement of the next 

pending job in the queue, the idle processors are allocated to running malleable jobs. 
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During allocation of idle resources, the malleable job which has started the earliest is 

given its maximum number of processors, provided enough processors are available. 

Otherwise the job is allocated the available number of processors. This continues as long 

as processors or running malleable jobs are available.  

The scheduler does not start a pending job or preempt processors from running 

jobs. It just makes the decision which pending jobs to start, which running jobs to shrink 

or expand. Once a schedule is computed, the scheduler sends the list of jobs to shrink and 

the list of jobs to expand to the negotiation manager. When the scheduler receives the 

negotiation status from the negotiation manger, it sends the list of pending jobs to be 

started to the controller. Ideally the scheduler may need to re-compute the schedule, 

based on the negotiation status, which in turn may require further negotiations; i.e. the 

scheduler may work in multiple stages until a final schedule acceptable to all parties 

involved is computed. The scheduler in the prototype implementation is a single stage 

scheduler, it does not re-compute based on the result of the negotiation. 

The negotiation manager negotiates with running malleable jobs, executes the 

expansion or the shrinkage of the running jobs, and also updates the system state. The 

expansion and shrinkage of malleable applications is a two-step process. In the first step, 

the negotiation is carried out; once an agreement is reached, the agreement is executed in 

the second step. In the case of expansion, the execution involves sending the list of 

physical processors to the application, and updating the system state. In the case of 

shrinkage, the execution involves receiving the list of processors released by the 

application, and updating the system state. In the present implementation, both the 
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negotiation and the implementation of an agreement are carried out by the negotiation 

manger. The negotiation is carried out sequentially starting with the first job in the 

negotiation list. Once negotiations and execution of agreements are complete, the 

negotiation manger sends the negotiation status back to the scheduler. For the prototype 

implementation, the negotiation cost between the scheduler and the malleable 

applications has been measured and was found to be very low (1.5 milliseconds on 

average for one round of negotiation) compared to the typical execution time of parallel 

applications. 

The controller invokes the dispatcher and sends the list of pending jobs to be 

started. The dispatcher reads the system state and assigns physical processors to the 

pending jobs to be started. It then creates a configuration file containing the list of 

physical processors allocated to the job, much like PBS node file for MPI jobs. This file 

is used by the application to spawn processes on the allocated processors. The dispatcher 

then sends the job information to the designated node controller to start the job. After the 

job is started, the dispatcher updates the system state. Like the negotiation manager, the 

dispatcher also works sequentially. 

4.3.2  Resource Negotiation Protocol 

In order to manage adaptive applications, interactions between applications and 

the RMS is required. The communication scenarios that may occur between adaptive 

applications and an RMS may widely vary: Two examples are briefly described below: 
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1. A malleable application, which requires that the number of processors be a power 

of 2. The minimum and maximum processor requirement is 8 and 32, 

respectively. Currently, the application is executing on 8 processors. In mid 

execution, the RMS may offer 15 processors to the application. Since the 

application can use only 8 additional processors out of 15 offered, instead of 

rejecting the offer, the application may ask the RMS to allocate 8 additional 

processors. 

2. In an environment where applications pay for resources, when some idle 

resources are available, the RMS may offer the resources to a malleable 

application for a price. The application may be willing to accept the additional 

resources at a lower price, and therefore makes a counter offer. Depending on the 

policy, the RMS may accept or reject the offer or even make another counter 

offer. 

From the above scenarios, it is evident that a simple accept/reject type of 

communication is not enough. A complex multi-round negotiation between applications 

and the RMS is required to support a wide variety of parallel adaptive applications. For 

negotiation of resources between adaptive applications and the RMS, a negotiation 

protocol has been developed and implemented. 

Figure 4.13 shows the finite state machine representation of the negotiation 

protocol. The initiator (either applications or the RMS) specifies resource requirements 

and associated terms and conditions. The other party examines the resource request and 

responds. The response can be accept, reject, or a counter offer with modified 
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requirements. At any time during the negotiation, any party can send a final offer 

indicating that no further negotiation can be done. The other party can either accept or 

reject the offer. Also, during the negotiation, any party can accept or reject an offer and 

thus terminate the negotiation. The negotiation results in either accepted or rejected 

status. In the case of an accept, the agreed resources are allocated. All the information 

regarding a negotiation (resources requested, terms and condition etc.) is encapsulated in 

an object, which we call the Negotiation Template (NT). The negotiation takes places by 

exchanging this template.  It is composed of three sections. The first section contains 

general information related to the two parties. The second section contains the status of 

the negotiation, and the third section contains a list of resource objects that are being 

negotiated. Each resource object has information about the resource being negotiated, the 

quantity of the resource being requested, and the status of each resource request. An NT 

can have more than one resource request inside it. Each resource request has its own 

terms for the negotiation and its own status. The overall status of the negotiation depends 

on the combined status of all the requested resources. A detailed description of the 

resource negotiation protocol is described in [16][17]. A set of APIs that can be used by 

adaptive applications and the RMS for resource negotiations has been developed. The 

negotiation manager uses these APIs to communicate and negotiate with malleable 

applications. 
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Figure 4.13  Finite state representation of the negotiation protocol 

  

 

 

 

4.3.3  Workload 

The workload creation for experiments in this research faces a unique problem. 

The problem is to generate workloads with actual applications, which will run on the test 

bed in a reasonable amount of time (since simulation is not being used) and that will be 

similar in characteristics to workloads from a validated model or to traces from some 

supercomputer center.  

The workload model by Allen B. Downey [52] has been used to generate 

workloads for experiments. Using Downey’s model, a rigid workload containing 120 jobs 

has been generated. The number of jobs has been limited to 120, so that the jobs can run 
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on a sixteen processors cluster (our test bed) in a reasonable amount of time. Actual 

applications have been created according to the workload generated from the model. 

From this original workload, several other rigid workloads have been created by 

decreasing the inter-arrival time. Since the processor requirement and the execution time 

remains unchanged, this results in a higher system load for the RMS. The factor by which 

the inter-arrival time is decreased is called the shrinking factor. The shrinking factor of 

the original workload is 1. When the load is low, the system utilization is low. As the 

load increases, the utilization increases and reaches a saturation point. The saturation for 

the generated workloads occurs at shrinking factor of 0.4. 

From the rigid workload with shrinking factor of 0.4, several workloads 

containing malleable jobs have been created. In order to study the impact of malleable 

applications, three parameters of the workload have been varied: the number of malleable 

jobs as percentage of total jobs, the processor flexibility range of malleable jobs, and the 

distribution of malleable jobs in the workload. The percentage of malleable jobs was 

varied between 0% and 100% to investigate the impact of number of malleable jobs on 

performance. Workloads with 10%, 25%, 33%, 50%, 75 % and 100% malleable jobs 

have been created. Both the flexibility range and flexibility of malleable jobs determines 

how efficiently the RMS can adapt malleable jobs to utilize all the processors in the 

cluster. The flexibility range of the malleable jobs was varied between 2 to 5, 2 to 6, 2 to 

8, and 4 to 8 processors. To utilize all the processors in the system there have to be some 

malleable jobs running at all times throughout the execution of a workload. A smart 

scheduler is needed to make sure that some malleable jobs are always running. Since the 
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RMS is using a FCFS scheduler, to avoid fragmentation, there has to be at least one 

malleable job either running or waiting at the front of the pending queue at the time of 

scheduling. The malleable jobs are distributed uniformly through out the workload. 

4.3.4  Application 

The Open System for Earthquake Engineering simulation (OpenSees) [62] 

software for simulating seismic response of structural and geotechnical systems has been 

selected as the test application. The application works in a master-worker fashion. It 

consists of one coordinating process and one or more computing processes to perform the 

actual simulation of structures’ response. The coordinating process takes a list of 

allocated processors and a list of structures as input. Implemented using PVM [63], it 

starts computing processes on each of the allocated processors and distributes the 

structures for simulation until all the structures are simulated. The execution time of the 

application is proportional to the number of structures to be simulated. 

The model of the malleable version of this application have four properties: i) the 

application can dynamically create and destroy processes; ii) it can accept a negotiation 

request from the RMS and carry out negotiation; iii) the application can run on any 

number of processors between a minimum and a maximum number of processors; iv) it 

can release agreed upon processors without delay. The coordinating process has the 

capability of changing the number of computing processes during execution by 

dynamically creating new computing processes or destroying existing computing 

processes. The coordinator process is also capable of accepting requests from the RMS 

and engaging in resource negotiation. The negotiation results in either accepting or 
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rejecting the offer from the RMS. The malleable application has two parameters: the 

minimum and the maximum number of processors. As long as the negotiation results in 

the total number of processors of the application to be between the minimum and 

maximum, the offer from the RMS is accepted. Otherwise the offer is rejected. In case of 

rejection, the RMS doesn’t terminate the application. The application continues to run on 

currently allocated processors. 

4.3.5  Results and Analysis 

To evaluate the impact of malleable jobs on system and application performance, 

the generated workloads have been executed on a dedicated cluster of 16 processors. The 

results of the experiments, namely, the system utilization, the schedule span, and the turn 

around time as a function of the composition of the workload (percentage of malleable 

jobs) for different flexibility ranges are shown in table 4.1 and figures 4.14 to 4.18 

respectively. 

From figure 4.14 it can be seen that the utilization increases as the number of 

malleable jobs in the workload increases. The utilization saturates at a job mix of about 

33%, and it increases very little with the increase of number of malleable jobs after 

saturation. For a flexibility range of 2-8, the utilization increases from 87% for an all 

rigid workload to 90% for 10% of malleable jobs, and reaches a maximum of 100% for 

all malleable jobs. The utilization is 98% for a job mix of 33%.The results also show that 

for the same job mix the utilization is little lower for lower flexibility range. Almost full 

(i.e., 99%) utilization is achieved with a workload containing all malleable jobs for all 
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flexibility range. This indicates that the overhead of managing malleable applications is 

very low. 

Figure 4.15 shows the variation of utilization with the flexibility range for all job 

mixes. Experiments have been carried out for three flexibilities: 3 processors (range 2 to 

5), 4 processors (range 2 to 6), and 6 processors (range 2 to 8). In can be seen from the 

figure that the utilization increases with the increase of flexibility of malleable jobs for all 

job mixes. This is because with higher flexibility the scheduler has a higher probability of 

filling up the cluster. The result also shows that the number of malleable jobs in the 

workload has a more prominent impact on utilization than the impact of flexibility on 

utilization. 

For the same flexibility, the utilization also depends on the minimum processors 

requirements. Figure 4.16 shows the variation of utilization for two flexibility ranges (2 

to 6 and 4 to 8) with same flexibility (4 processors). It can be seen from the figure that the 

utilization for the range 4-8 is lower than the utilization for the range 2-6 at lower job 

mix, and the and the gap in utilization decreases as the number of malleable jobs 

increases. This is because with lower minimum processor requirement, the scheduler has 

a higher probability of scheduling a pending malleable job. For example consider the 

scenario that there are 2 idle processors, all the running jobs are either rigid and/or 

malleable running on minimum processors, and the job at the head of the pending queue 

is malleable. In such a case, if the flexibility range of the pending malleable job is 2-6, it 

could be started immediately, but if the flexibility range is 4-8, the job cannot be started. 

It will have to wait until a running job exits and releases at least 2 more processors 
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making the number of idle processors 4 or more. As the number of malleable jobs 

increases, the probability of a malleable job running on more than its minimum 

processors increases, which in turn increases the probability of releasing 2 processors by 

shrinking running malleable to start the pending malleable jobs. As a result, the gap in 

utilization decreases as the number of malleable job increases. 

Figure 4.17 shows the plots for the schedule span as function of job mix. Similar 

trends as those of utilization can be seen for the schedule span. The schedule span 

decreases 668 seconds from 5058 for a rigid workload to 4390 for all malleable jobs for a 

flexibility range of 2-8. For 10% malleable jobs the schedule span decreased to 4861 

seconds. Moving from an all rigid workload to a 10% malleable job mix saves 10688 cpu 

seconds. 

The average turn around time (TAT) of figure 4.18 shows similar trends as 

schedule span. The average turn around time decreases from 1968 seconds for a rigid 

workload to 1849 seconds for 10% malleable jobs to a minimum of up to 1657 seconds 

for 100% malleable jobs. For 33% malleable jobs the turn around time decreases to 1675 

seconds. It means that for a job mix of 33% on average, an user has to wait 273 seconds 

less to get his/her result after the submission of a job.  

The improvement in performance in the presence of malleable jobs in the 

workload comes at the expense of the execution time of the malleable jobs. The 

experimental results show that in malleable mode, the execution time of a job increases in 

general. Since the scheduler has to shrink a malleable job to accommodate the pending 

jobs, on average, a job runs on a lower number of processors in malleable mode than it 
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does in rigid mode. Table 4.2 presents the average execution time, average turn around 

time, and average wait time for different job mixes for the flexibility range 2-8. The 

graph of figure 4.19 shows the average execution time, the average turn around time, and 

the average wait time as function of number of malleable jobs in the workload. From the 

figure it can be seen that as the number of malleable jobs increases, the job execution 

time increases on average. However, as the number of malleable job increases, the 

average turn around time decreases. This is because with higher number of malleable 

jobs, a job has to wait less in the pending queue. 

Table 4.1 Utilization, schedule span and average TAT for different job mix in workload 

%Job 
Mix 

Utilization Schedule Span(Sec) Average TAT (Sec) 
2-5 2-6 2-8 4-8 2-5 2-6 2-8 4-8 2-5 2-6 2-8 4-8 

0% .87 .87 .87 .87 5058 5058 5058 5058 1969 1969 1969 1969 
10% .90 .91 .91 .89 4884 4872 4861 4949 1866 1858 1849 1886 
25% .95 .96 .96 .95 4653 4613 4581 4661 1737 1711 1691 1735 
33% .96 .97 .98 .96 4620 4560 4490 4569 1712 1696 1675 1711 
50% .98 .98 .98 .97 4495 4487 4486 4539 1650 1647 1641 1665 
75% .99 .98 .99 .98 4472 4483 4456 4486 1668 1658 1658 1637 
100% .99 .99 1.0 .99 4470 4445 4390 4455 1672 1669 1657 1633 

Table 4.2   Average execution time, turn around time and wait time for different job mix 
in workload 

% of 
Job 
Mix 

Avg. 
Exc. 
Time 

Avg. Turn 
Around 
Time 

Avg. 
Wait 
Time 

0% 154 1969 1815 
10% 156 1849 1694 
25% 161 1691 1530 
33% 160 1675 1514 
50% 192 1641 1449 
75% 239 1658 1418 
100% 284 1657 1373 
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Figure 4.14  Utilization as function of job-mix 
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Figure 4.16  Utilization as function of percentage of malleable jobs 
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Figure 4.17  Schedule span as function of job-mix 
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Figure 4.18 Turn around time as function of job-mix 
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Figure 4.19 Average execution, turn around, and wait time as function of job-mix 
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CHAPTER V  

VALIDATION 

In chapter III we have described the model of an adaptive parallel system and in 

chapter IV we have described a discreet event simulator to simulate the model. Chapter 

IV also presents a prototype implementation of the model. In this chapter and next 

chapter we present the experimental results with the simulator.  Figure 5.1 shows the 

experimental procedure with the simulator. 
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One can think that the model we have developed has three representations: the 

prototype, the simulator and the real rigid parallel systems. The model was developed 

based on real rigid parallel system as well as a hypothetical adaptive parallel system. 

Consequently, one can think that the read rigid system is a representation of the model 

and vice versa. To validate the model we need to validate the simulator against real 

systems. We have validated the simulator against a rigid parallel system at San Diego 

supercomputer center as well as against the prototype. For validation against rigid system 

we conducted simulation experiments with real data obtained from workload logs at 

SDSC [65] and compared the outputs of the simulation with the outputs of SDSC system. 

For validation against adaptive system we conducted experiments with prototype system 

with realistic workload. Simulation experiments were conducted with the same realistic 

workload as input, and the output of the simulator and the prototype was compared The 

realistic workload is generated using modifies Downy’s workload model. Once the 

simulator is validated against the rigid and adaptive parallel system we conducted 

simulation experiments with synthetic workloads and with different model parameters to 

gain new knowledge about adaptive parallel systems. 

In this chapter we present a set of experiments to validate the simulator while 

Chapter VI presents simulation experiments to gain new knowledge about adaptive 

parallel system. Two sets of experiments were performed for the validation of the 

simulator. The first set of experiments is directed towards validating the model for rigid 

parallel systems. The second set of experiments validates the model for an adaptive 
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parallel system with malleable applications. Workload data from the prototype system 

described in chapter IV has been used for the validation of the simulator.  

The workload data for simulation experiments consists of information about a set 

of applications. For each job, the workload data provides application type 

(rigid/malleable), arrival time, number of processors required, and the execution time on 

the required processors. In addition, for malleable applications the minimum and the 

maximum number of processors that an application is capable utilizing are also provided. 

5.1 Evaluation Method 

In general a simulator is valid if it can accurately approximate the real system it is 

simulating. The simulator is evaluated using two approaches: individual application data 

and group data. 

5.1.1  Individual Application Data 

In this approach we run the simulator using data set from real systems. The 

individual application data from the simulator output is compared with the output of the 

real system. The start time and the completion time of each individual application from 

simulator and real system is compared. For each data set the Euclidean Distance de of 

each application’s start time, and completion time from simulator and real system output 

is computed.  

The Euclidean distance de between two points is p = ( p , p ,...., p )1 2 n 

and q = (q , q ,...., q ) , in Euclidean n-space, is defined as:1 2 n 
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x 

n 2d ( )p, q = ∑ pi − qi e 
i = 1 

( )

Euclidean distance between two one dimensional points P = ( )px  andQ = (q ) , 
the distance is computed as: 

p − q( −q )2 
=px x x x 

Since time is a one dimensional data one dimensional Euclidean distance is used 

as a metric to compare the start time Ts and completion time Tc between real system and 

simulator output. The distance de should very small and should not vary from job to job. 

A plot of de against job number should be a straight line.  

5.1.2  Group Data 

In this approach the performance metric of a workload (data set) is computed 

from simulator and real system output. The performance metric for a workload are 

system utilization U and average turn around time ATAT. The Euclidean distance 

between utilization of real system Ur and simulator Us for all data sets are computed. 

Similarly the Euclidean distance between average turn around time of real system ATATr 

and simulator ATATs for all data sets are computed. The distance de should be very small 

and should not vary from data set to data set. A plot of de against data set should be a 

straight line. 

In addition, for malleable workloads the trends in variation of U and ATAT 

between simulator outputs are compared to real system outputs to see whether the trends 
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are similar. To evaluate whether the behavior of the simulator scales properly, simulation 

experiments are conducted with several synthetically generated malleable workloads. The 

properties of the synthetic workloads are kept the same as those of the real malleable 

workloads, except that the number of jobs in the workloads and the maximum number of 

processors is increased proportionally. For synthetic workloads the simulation parameters 

are set equal to the values measured from the real system except for the cluster size which 

is increased proportional to the increase in number of maximum processor. For the 

synthetic malleable workloads the trend in variation of utilization is compared to 

variation in utilization in real system with malleable workload.  

5.2 Experimental Data 

For experiments with rigid data, workload log from San Diego supercomputer 

center (SDSC) and data from the prototype system has been used. The SDSC data set 

consist of 59725 jobs from April 1998 to April 2000. The jobs were executed on an IBM 

SP2 computer comprised of 128 processors. The prototype data set consists of 120 jobs. 

The jobs were executed on a cluster of 16 processors.  

For experiments with malleable applications six data sets from the prototype 

system have been used. Each data set consists of 120 parallel jobs with a processors 

requirement vary between 2 to 8 processors. The minimum and maximum processor 

requirement of malleable jobs were 2 and 8 respectively. The rigid run time of the job 

varies between 100 and 800 seconds.  The differences between the data sets are in 

number of malleable jobs and in number of minimum and maximum processors for each 

malleable job. Table 5.1 summarizes the characteristics of malleable datasets. To evaluate 
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the scalability of the simulator, synthetic malleable workloads were generated using the 

workload model described in chapter III Table 5.2 shows the characteristics of synthetic 

malleable workloads. 

Table 5.1  Malleable workload from prototype system 

Data Sets No. of Jobs Min. # of 
Proc. 

Max. # of 
Proc 

Min. Run 
Time 

Max Run 
Time 

Pmin for 
Malleable 
Jobs 

Pmax for 
Malleable 
Job 

% of 
Malleable 
Job 

1 120 2 8 100 800 2 8 10 
2 120 2 8 100 800 2 8 33 
3 120 2 8 100 800 2 8 50 
4 120 2 8 100 800 2 8 75 
5 120 2 8 100 800 2 8 100 

Table 5.2  Malleable workload generated synthetically 

Data Sets No. of Jobs Min. # of 
Proc. 

Max. # of 
Proc 

Min. Run 
Time 

Max Run 
Time 

Pmin for 
Malleable 
Jobs 

Pmax for 
Malleable 
Job 

% of 
Malleable 
Job 

1 1200 2 32 100 800 2 32 10 
2 1200 2 32 100 800 2 32 33 
3 1200 2 32 100 800 2 32 50 
4 1200 2 32 100 800 2 32 75 
5 1200 2 32 100 800 2 32 100 

5.3 Experimental Results 

In order to validate the simulator we run two set of simulation experiments. The 

First set of simulation experiments was conducted with rigid data sets. The second set of f 

experiments was conducted with dataset containing malleable jobs. 

5.3.1  Simulation with Rigid Data 

The normalized Euclidean distance between the real system output and simulator 

output for both application start time and application completion time is used as metric to 
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Figure 5.3  Comparison of completion time of simulator and SDSC output 
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Figure 5.2  Comparison of start time of simulator and SDSC output 

    

 

 

 

 

 

evaluate the how accurately the simulator approximate real system. The normalized value 

is computed according to the following equation. 

Normalized value = |(real system output – simulator output)| / real system output 
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Figure 5.4  Comparison of start time of simulator and prototype output 

    

 

 

 

 

 

Figure 5.1 through 5.2 shows the graph of normalized Euclidean distance de for 

application start time Ts and application completion time Tc for rigid data from San Diego 

supercomputer center and prototype system.  
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From Figures 5.2 - 5.5, it can be seen that the simulator outputs very closely 

approximate the outputs of the real system. For all applications the difference between 

real data and simulator output is less than 0.1 percent for both application start time and 

completion time.  The mean and standard deviation of distances for start time and 

completion time is very low. Table 5.3 shows the comparison of system utilization and 

average turn around time between real system and simulator output. From Table 5.3 it 

can be seen that the system utilization and average turn around time of simulation output 

very closely approximate those from real system. From experimental results presented 

above it can be concluded that the simulator is a faithful representation of real system 

with rigid applications. 

Table 5.3  Comparison of utilization and average turn around time 

Utilization Normalized 
Distance 

 Avg. TAT Normalized 
Distance Real Simulator 

Prototype 0.8733 0.8736 0.00037 1968 1997 0.0140 
SDSC 0.7432 0.7434 0.00027 3157 3142 0.0047 

5.3.2  Simulation with Malleable Data 

For simulations with malleable applications, the negotiation cost and adaptation 

cost of the actual prototype system for malleable application was measured. The 

simulator parameters were set to actual measured values. Table 5.4 shows the simulator 

parameter for experiments with malleable workloads presented in Table 5.2. 
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Table 5.4  Parameters for simulation with malleable applications 

Parameter Value 
Minimum Negotiation Cost 0.0015 sec 
Maximum Negotiation Cost 0.0015 sec 
Minimum Adaptation Cost 0.002sec 
Maximum Adaptation Cost 0.002 sec 
Percentage of Successful 
Negotiation 

100 

Size of cluster 16 processors 

Figure 5.6 to Figure 5.15 shows the comparison of start time and completion time 

of individual jobs of malleable workloads for data set 1 to data set 5. From the figures it 

can be seen that for all workloads that the difference between the start times de(Ts)from 

simulator of real system is very low. Similarly for completion time the difference de(Ts) 

is very low. However, for some jobs the difference is larger than expected. For example 

de(Ts) for job 19 of data set 3, de(Tc)for jobs 15, 19, 23, 26, 33, 36 of data set 2 jobs 13, 

16 and 49 of data set 4 and job 36 of dataset 6 is more than 0.1. This means for these 

cases the simulator output varies more than 10 percent compared to the real data.   

There are two explanations for this variation. First, the model and subsequently 

the simulator don’t take into account the unpredictable system variance in the real 

system. For example in real system a job or the RMS may have to share a computing 

node with other system processes, and, as a result, a job may start or finish its 

computation later that expected. The average negotiation and adaptation cost from one 

workload (data set 1) the real system has been used. as parameters for simulation 

experiments,  In reality these costs varies a little within a workload and from workload to 

workload. 
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Figure 5.6 Comparison of start time of for malleable data set 1 (10% job-mix) 
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Figure 5.7  Comparison of completion for malleable data set 1 (10% job-mix) 
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Figure 5.8  Comparison of start time of for malleable data set 2 (33% job-mix) 
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Figure 5.9  Comparison of completion for malleable data set 2 (33% job-mix) 
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Figure 5.10  Comparison of start time of for malleable data set 3 (50% job-mix) 

-0.1 
0.1 
0.3 
0.5 
0.7 
0.9 
1.1 

1  20  39  58  77  96  115  

Jobs 

No
rm

al
iz

ed
 D

is
ta

nc
e

Mean  = 0.017 
Std. Dev. = .02 

Figure 5.11 Comparison of completion for malleable data set 3 (50% job-mix) 
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Figure 5.12  Comparison of start time of for malleable data set 4 (75% job-mix) 
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Figure 5.13  Comparison of completion for malleable data set 4 (75% job-mix) 
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Figure 5.14  Comparison of start time of for malleable data set 5 (100% job-mix) 
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Figure 5.15  Comparison of completion for malleable data set 5 (100% job-mix) 

Table 5.5 shows the mean and standard deviation of de(Ts) and  de(Tc) for all 

workloads. It can be seen from the table, that the mean and standard deviation is less than 

0.02 for all data sets, except for data set 2. Table 5.6, Figures 5.16 and 5.17 show the 

comparison of utilization and average turn around time for rigid data set and malleable 
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data sets. It can be seen from the table that the simulator output matches closely with 

actual data. Figure 5.18 shows the trend in variation of utilization with variation of 

percentage of malleable jobs in workload. The trend is similar in simulator and real 

system. In both case the utilization is about 0.873 for rigid workloads. The utilization 

increases as percentage of malleable job increases and reaches a saturation point of about 

0.984 for 33 % malleable jobs in both cases. After the saturation point the utilization 

increases about 1 and 1.5 percent for simulator and real system respectively for all 

malleable jobs.  Figure 5.19 shows the trend in variation of average turn around time with 

variation of percentage of malleable jobs in workload. The trend is similar in simulator 

and real system. The turn around time decreases as percentage of malleable job increases 

and reaches to a saturation point for 33 % malleable jobs in both cases. After the 

saturation point the turn around time do not change significantly as the percentage of 

malleable job increases. 

Table 5.5  Mean and standard deviation of distance of start time and completion time  

Data de(Ts) de(Tc) 
Set Mean Std. Dev. Mean Std. Dev 
1 0.0007 0.002 0.001 0.003 
2 0.036 0.025 0.042 0.049 
3 0.017 0.09 0.016 0.025 
4 0.009 0.007 0.01 0.008 
5 0.022 0.013 0.024 0.023 
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Figure 5.16  Comparison of utilization between simulator output and real system for data 
sets 1-5 

    

 

 
  

 
    

 
 

  
 

 
  

   
    
    
     
    

   
  

Table 5.6   Comparison of utilization and average turn around time between simulator 
output and real system 

%of 
Job 
Mix 

Utilization Turn Around Time 
Real Simulator Normalized 

Distance 
Real 
System 

Simula 
tor 

Normalized 
Distance 

0 0.873344 0.87367 0.000373 1968.53 1997.89 0.014915 
10 0.908738 0.90933 0.000652 1849.26 1863.08 0.007473 
33 0.983825 0.98461 0.000798 1674.6 1680.89 0.003756 
50 0.984702 0.98407 0.000642 1641.47 1666.1 0.015005 
75 0.991332 0.9904 0.00094 1657.91 1684.91 0.016286 
100 1.000000 0.9945 0.00550 1657.45 1701.91 0.026824 
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Figure 5.19  Comparison of average turn around time between simulator and prototype 

  

 

 

 

 

 

 

 

 

 

Table 5.7 and figure 5.20 shows the trend in utilization and average turn around 

time for synthetic malleable workloads presented in table 5.3.  From the table and the 

figure it can be seen that the trends in utilization and average turn around time for the 

synthetic malleable workloads is similar to those of real system. For all rigid jobs the 

utilization is about 0.87 which increases with the increase of percentage of malleable jobs 

and reaches to a saturation point of 0.99 for 335 malleable jobs. The utilization does vary 

significantly after that point. Similar behavior can be observed in case of average turn 

around time. 

121 



www.manaraa.com

 

 
 

 

 

  

 

0.7 

0.8 

0.9 

1 

Ut
ili

za
tio

n 

20000 

22000 

24000 

26000 

28000 

30000 

32000 

Av
g 

TA
T 

(S
 ec

s.
) 

0 100 0  10  20  30  40  50  60  70  80  90  100  
Percentage of malleable jobs Percentage of Malleable Jobs 

(a) Utilization (b) Average Turn Around Time 

Figure 5.20  Variation of utilization and average turn around time with the variation of 
percentage of malleable job for 1200 Synthetic workloads 

    

 

 
 

       
 

 
 
 
 
 
 

  

 

Table 5.7  Trend in utilization and average turn around time for synthetic workload 

% of job Mix Utilization Average Turn 
Around Time 
(secs.) 

0 0.874 30850 
10 0.946 28088 
33 0.995 26112 
50 0.996 26026 
75 0.998 25938 
100 0.997 25938 

5.4 Summary 

From the results presented in section 5.3 it can be seen that the start time and 

completion for jobs from simulator output closely match with those of simulator outputs 

for both rigid and malleable workloads. In case of start time the variation is more than 10 

percent for one job out 720 jobs. For completion time 10 jobs out of 720 has more than 

10 % variation. As explained in section 5.3.2 the reason for these exceptions are 

unpredictable system variance, variation in negotiation cost, and adaptation cost in real 
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system. However, the difference in mean and standard deviation of distance between 

simulator and real system is very low (less than 0.02).   

For all workload the distance between simulator and real system for both 

utilization and average turn around time is very low. Moreover the trend in variation of 

utilization and average turn around time with the variation of percentage of malleable 

jobs is similar. Also from the results of experiments with synthetic load it can be 

observed that the trends in variation of utilization and turn around time are similar to 

those of the real system, which signifies that the simulator scales properly. From these 

results it can be concluded that the simulator faithfully approximates a real system. 
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CHAPTER VI  

EXPERIMENTAL RESULTS 

In Chapter IV the design and implementation of a simulator for adaptive parallel 

system has been presented. The validation of the simulator has been discussed in Chapter 

V. In this chapter, the design, results and analysis of the simulation experiments to 

investigate the impact of system parameters on performance that were conducted using 

the validated simulator have been presented.  Section 6.1 discussed the design of the 

experimental setup. A discussion on the dataset that were used for the simulation 

experiment is presented in section 6.2. The experimental results are discussed in sections 

6.3 to 6.6 and finally a summary is presented in section 6.7. 

6.1 Experimental Design 

The overall purpose of simulation experiments is to determine how the model 

parameters impact application and system performance in an adaptive parallel system. To 

achieve this goal a set of model parameter to study must be determined as well as how 

these parameters will be varied during the simulation experiments and the range of values 

of these parameters.  
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An adaptive parallel system consists of an adaptive RMS and a malleable 

workload. A malleable workload contains rigid as well as malleable jobs and the 

flexibility of malleable jobs can vary from workload to workload. So it has been decided 

that impact of the number of malleable jobs in the workload and the flexibility of the 

malleable jobs would be the parameter to be investigated. The execution of malleable 

jobs consists of phases and jobs adapt at a phase boundary by shrinking or expanding. 

The phase change of a malleable job involves negotiation with the RMS and 

reconfiguration of the job to utilize a new set of processor. As a result it has been decided 

to investigate the impact of negotiation and adaptation on performance.   

The impact of the following parameters on system and application performance 

has been investigated through simulation experiments. 1) The number of malleable jobs 

in the workload, 2) flexibility of malleable jobs, 3) cost of negotiation, and 4) cost of 

adaptation of malleable jobs. To determine the impact of a parameter during the 

simulation experiments the value of the parameter has been varied while other parameters 

have been kept constant. For example to measure the impact of number of malleable jobs 

on performance, the number of malleable jobs in the workload has been varied, while the 

flexibility of malleable jobs, the cost of negotiation, and cost of adaptation have been 

kept constant. Then for each variation of number of malleable jobs, simulation 

experiments have been conducted by varying the cost of negotiation. In this manner one 

by one all the parameters have been varied while the rest of the parameters has been kept 
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constant. The experiments have been designed this way to isolate the impact of one 

parameter on performance. For each simulation run with a workload the following 

statistics has been collected: system utilization, average turn around time, average wait 

time, average execution time, total number of negotiation and total number of adaptation. 

The range of values of the parameters that have been selected for the simulation 

experiments are as follows: 

Number of malleable jobs: The number of malleable jobs in a workload has been 

has been selected as percentage of total number of jobs in the workload. The number of 

malleable jobs has been varied from 10% to 100% in steps of 10. 

Flexibility of Malleable jobs: The flexibility of malleable jobs in the workload has 

been varied in two ways. In one approach the minimum number of processors has been 

kept constant while the maximum number of processors has been varied. This has been 

done to measure impact of flexibility on performance. Experiments have been conducted 

with following values of flexibility range: 2-16, 2-32, 2-64, 2-80, 2-96, 2-112, and 2-128. 

In the second approach the flexibility has been kept constant while the minimum number 

processors of the range have been varied. This has been done to determine the impact of 

the values of the minimum processor on performance for same flexibility. Experiments 

have been conducted with following values of flexibility range: 4-130, 8-134, 12-138, 

and 16-142. 
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Negotiation Cost: Experiments have been conducted with the following values of 

negotiation costs: 0.0015 second, 0.003 second, 0.006 second, 0.006 second, 0.0012 

second, 0.012 second, 0.024 second, 0.048 second, 0.96 second, 0.2 second, 0.4 second, 

0.8 second, 2 seconds, 4 second and 8 seconds. From the experiments with the prototype 

system in 16 processor dedicated cluster, it has been found that the average negotiation 

cost is 0.0015 seconds on average. In the experiments all negotiations were two round 

negotiations and applications responded to a negotiation without delay. For this reason 

0.0015 second has been selected as the lower limit of the negotiation cost. The other 

values of the negotiation cost have been selected by doubling the previous values. The 

upper limit of the negotiation cost has been selected as 8 seconds, which is 5333 times 

larger than the lower limit. It has been assumed that this is large enough value that may 

occur in a real system. 

Adaptation Cost: Experiment have been conducted with the following values of 

adaptation costs: 0.002 second, 0.004 second, 0.008 second, 0.01 second, 0.02 second, 

0.04 second, 0.08 second, 0.2 second, 0.4 second, 0.8 second, 1 second, 2 seconds, 4 

seconds, and 8 seconds. Like the negotiation cost the lower limit of the adaptation cost 

has been selected as the adaptation cost measured in the prototype system and the upper 

limit has been selected as 4000 times larger than the lower limit. 
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6.2 Experimental Data 

As explained in Chapter III (sub section 3.4.3) for this research, a workload model 

has been developed by extending Downy’s model. Synthetic data for the simulation 

experiments has been generated using this model. To generate a workload the model 

takes the following parameters as input: 1) number of jobs in the workload, 2) the 

minimum execution time and maximum execution time of the jobs, 3) the range of the 

default processors, 4) the number of malleable jobs in the workload, and 5) the flexibility 

range (minimum and maximum number of processors) of malleable jobs. Each job in a 

workload generated by the model contains the following information. 

1. Arrival time of the job 

2. Type of the jobs (Rigid/Malleable) 

3. Number of processors required. 

4. Execution time of the job on the required number of processors. 

5. Flexibility range (for malleable jobs) 

A workload with all rigid jobs has been generated with 1000 jobs. The minimum 

run time and maximum run time has been fixed to 100 second and 3600 seconds 

respectively, and default processor range has been fixed to 16-128 processors. The rigid 

workload has been used as the baseline workload. Several malleable workloads have 

been generated from the base line workload by varying the flexibility range and number 

of malleable jobs with in the range mention in section 6.1.  
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There are two justifications for selecting the size of the workload as 1000 jobs. In 

most super computer centers on average about 200 jobs are submitted in a day in one 

cluster [65]. Workloads with 1000 jobs have been selected to simulate about five days of 

workload of a cluster in a typical super computer center, which seems reasonable. 

Simulation experiments with larger workload size of 1000 jobs, 3000 jobs and 5000 jobs 

have been conducted. Table 6.1 and figure 6.1 show the result of these experiments. It 

has been found that increasing the workload size do not impact the performance in any 

significant way. Increasing workload size would increase the simulation time, data file 

size and result processing time.  

Table 6.1   Utilization for workload size 1000 jobs, 3000 jobs and 5000 jobs. 

% of 
Malleable 
Job 

Utilization 

1000 3000 5000 
0 0.84381 0.84693 0.84489 

10 0.92574 0.92725 0.92658 
20 0.99747 0.99286 0.99134 
30 0.9993 0.99969 0.9997 
40 0.99873 0.99973 0.99989 
50 0.9998 0.9996 0.99955 
60 0.9998 0.9999 0.99994 
70 0.99849 0.9994 0.99989 
80 0.99874 0.99924 0.99988 
90 0.99979 0.99955 0.99977 

100 0.99974 0.99988 0.99978 
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Utilization as function of number of Malleable jobs 

0.8 

0.85 

0.9 

0.95 

1 

0  10  20  30  40  50  60  70  80  90  100  

% of Malleable Jobs 

Ut
ili

za
tio

n 

1000 
3000 
5000 

Figure 6.1    Utilization for workload size 1000 jobs, 3000 jobs and 5000 jobs. 

6.3 Performance with the Variation of Number of Malleable Jobs in Workload 

To investigate the impact of number of malleable jobs in the workload on 

performance, simulation experiments with all rigid workload, and workloads containing 

different percentage of malleable jobs have been conducted. The rigid workload is used 

as baseline to compare performance with malleable workloads. Each workload is 

simulated twice, once on a cluster with 256 nodes and the second time on a cluster with 

512 nodes. Table 6.2 shows the variation of performance as the percentage of malleable 

jobs increases in the workload. Figure 6.2 and 6.3 graphically shows the information 

presented in Table 6.2. From the results presented in table 6.2 and figure 6.2 it can be 

seen that the system utilization increases as the number of malleable jobs in the workload 
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increases. The utilization saturates at one point and it does not vary significantly after the 

saturation. 

Table 6.2     Variation of performance with change in number of malleable jobs in the    
workload. Negotiation cost: 1.5 ms, adaptation cost: 2 ms. 

% of Malleable 
jobs 

Cluster Size : 256 Nodes Cluster Size: 512 Nodes 
Utilization Avg. TAT 

(Secs) 
Utilization Avg. TAT 

(Secs) 
0 0.84381 109741 0.91165 47580 
10 0.92574 101443 0.98121 44222 
20 0.99747 93002 0.99186 42997 
30 0.99930 92724 0.99112 43387 
40 0.99873 91822 0.99447 42441 
50 0.99980 91913 0.99178 42601 
60 0.99980 91607 0.99860 42293 
70 0.99849 89184 0.98803 40295 
80 0.99879 88069 0.99327 38929 
90 0.99979 89398 0.99488 38909 
100 0.99974 86115 0.99629 38235 

131 



www.manaraa.com

  

 
 

 
 

 

Utilization as Function of Job Mix 
(1000 Jobs) 

0.8 

0.85 

0.9 

0.95 

1 

Ut
ili

za
tio

n 

0  10  20  30  40  50  60  70  80  90  100  

% of Malleable Jobs 

(b) Cluster size 512 nodes 

Figure 6.2   Variation of utilization with the number of malleable jobs in the workload.    
Negotiation cost: 1.5 ms, adaptation cost: 2 ms 

    

 

 

 

The utilization at saturation is above 99%, which indicates that the cluster is fully 

utilized after saturation. The saturation occurs at 20% job mix. The improvement in 

utilization over all rigid workload is about 15% in a 256 node cluster and 8% in a 512 

node cluster. From the results it can be seen that the improvement over the same rigid 

workload may vary from cluster to cluster. The most important finding of these 

experiments is that irrespective of cluster size or base line utilization with all rigid 

workload, it is possible to achieve maximum utilization with a malleable workload. The 

maximum possible utilization can be achieved with relatively few malleable jobs (20% in 

our experiments). 
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In this research we are interested in the gap between the performance of an all 

rigid workload and the maximum achievable performance. We want to investigate what 

parameters of a workload and RMS impact this difference and how these parameters 

impact the performance. 

Table 6.2 and Figure 6.3 present the impact of malleable jobs on average turn 

around time. From the results it can be seen that the average turn around time decreases 

as the number of malleable jobs in the workload increases. The decrease is initially high 

and gradually the decrease becomes low as the number of malleable job increases further. 

Unlike utilization no saturation can be observed in case of average turn around time. For 

a 256 node cluster, the average turn around time improves about 15% for a 20% job mix, 

while the improvement was about 10% for a 512 node cluster. For all malleable jobs the 

improvement was 27% for 256 nodes cluster and 24 % for 512 nodes cluster.  

The improvement in performance in the presence of malleable jobs in the 

workload comes at the expense of the execution time of the malleable jobs. In malleable 

mode, the execution time of a job increases in general. Since the scheduler has to shrink a 

malleable job to accommodate the pending jobs, on average, a job runs on a lower 

number of processors in malleable mode than it does in rigid mode. The graph of figure 

6.4 shows the average execution time, the average turn around time, and the average wait 

time as function of number of malleable jobs in the workload. From the figure it can be 

seen that as the number of malleable jobs increases, the job execution time increases on 
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Avg. TAT as Function of Job Mix (1000 Jobs) 
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Figure 6.3    Variation of average turn around time with the number of malleable jobs for 
data set 1. Negotiation cost: 1.5 ms, adaptation cost: 2 ms

    

 

 

average. However, as the number of malleable job increases, the average turn around 

time decreases. This is because with higher number of malleable jobs, a job has to wait 

less in the pending queue. 
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Figure 6.4    Variation of average execution, wait, and turn around time as the number of 
malleable jobs increases. Flexibility range: 2- 128, negotiation cost: 1.5ms, 
adaptation cost: 2ms, cluster size: 256 nodes.  

    

 

 

 

  

 

 

6.4 Performance with the Variation of Flexibility of Malleable Jobs 

To measure impact of flexibility of malleable jobs on performance, two sets of 

experiments were conducted. In the first set of experiments, the minimum number of 

processors was varied keeping the flexibility (difference between the maximum and 

minimum number of processors) constant. The goal was to investigate the impact of the 

minimum number of processors on performance for constant flexibility. For example if 

there are two malleable workloads, one has malleable jobs with flexibility range 10 - 30 

processor, and other has malleable jobs with flexibility range 20 -40 processors. The 

malleable jobs in both workloads have flexibility of 20 processors, but in one the 
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minimum number of processors is 10 and in the other it is 20. The goal of these 

experiments is to determine if the performance of these two workloads is different?  

In the second set of experiments the minimum number of processors was kept 

constant and the flexibility was varied by changing the maximum number of processors. 

The goal of these experiments was to measure the impact of variation of flexibility on 

performance while the minimum number of processors is constant. The two sets of 

experiments were conducted with 256 nodes cluster.  

Table 6.3 shows the minimum processors for first set of experiments. Table 6.4 

presents the impact of minimum number processors of malleable jobs on performance for 

constant flexibility. 

Table 6.3    Flexibility range for experiment set one 

Minimum 
Processor 

Maximum 
Processors 

Flexibility 

2 128 126 
4 130 126 
8 134 126 

12 134 126 
16 134 126 
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Table 6.4   Impact of minimum number of processor on performance. Flexibility: 126 
processors, negotiation cost: 1.5 ms, adaptation cost: 2ms. 

Min. Utilization Average Turn Around Time (secs) 
Proc. 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 

2 0.93 0.997 0.999 0.999 0.999 101443 93002 92724 91822 91913 
4 0.92 0.993 0.999 0.999 0.999 101744 93733 92739 92330 92231 
8 0.92 0.982 0.997 0.999 0.999 102379 94956 93043 92599 92526 

12 0.91 0.973 0.991 0.999 0.995 102688 95712 93537 92742 93050 
16 0.90 0.965 0.983 0.998 0.993 103083 96507 94111 92804 93188 

The results of table 6.4 are presented graphically in Figure 6.5 and Figure 6.6. 

From the results it can seen that utilization decreases as the number of minimum 

processors of malleable jobs increases, while the percentage of malleable jobs in the 

workload is kept constant. The variation of utilization is more pronounced for 10% and 

20% job mixes. For job mixes above 40%, the utilization is relatively unaffected by the 

number of minimum processors of malleable jobs. From figure 6.6 similar trends can be 

observed in case of average turn around time.  
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Figure 6.5    Variation of utilization with minimum number of processor on performance 
for data set 1. Flexibility: 126 processors, negotiation cost: 1.5 ms, 
adaptation cost: 2ms. 

    

 

 

 

The reason for this behavior is that with a lower minimum processor requirement, 

the scheduler has a higher probability of scheduling a pending malleable job. For 

example, consider the scenario that there are 2 idle processors, all the running jobs are 

either rigid and/or malleable running on minimum processors, and the job at the head of 

the pending list is malleable. In such case, if the flexibility range of the pending 

malleable job is 2-6, it could be started immediately, but if the flexibility range is 4-8, the 

job cannot be started. It has to wait till a running job exits and releases at least 2 or more 

processors making the number of idle processors 4 or more. As the number of malleable 

jobs increases, the probability of a malleable job running on more than its minimum 
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processors increases, which in turn increases the probability of releasing 2 processors by 

shrinking running malleable to start the pending malleable jobs.  

In case of workloads with a low number of malleable jobs, at any particular time 

there are more rigid jobs running and waiting, compared to malleable jobs. In this 

situation to utilize any idle processor by scheduling a pending rigid job, the scheduler 

needs to preempt required number of processor by shrinking running malleable jobs. 

Since there are few malleable jobs running, if the lower bound of the flexibility range is 

high, the scheduler has less opportunity of preempting required number of processors, 

compared to the situation when the lower bound is low. As a result for workloads with 

low number of malleable jobs, the utilization decreases as the lower bound of flexibility 

range of malleable job increases. However, as the number of malleable jobs in the 

workload increases, the number of running malleable job also increases. In this situation 

the scheduler has higher probability of preempting required number of processors to 

accommodate the pending job, and thereby utilizing the idle processor. As a result the 

lower bound of flexibility range of malleable jobs doesn’t have any significant impact on 

performance when the workload contains a high number of malleable jobs. 
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Figure 6.6    Variation of avg. TAT with minimum number of processor on performance 
for data set 1. Flexibility: 126 processors, negotiation cost: 1.5 ms, 
adaptation cost: 2ms. 

Experimental result presented in Tables 6.5 and 6.6 show the impact of flexibility 

on performance, for constant minimum number of processors. Figures 6.7, 6.8 and 6.9 

present the results of Tables 6.5 and 6.6 graphically. Figure 6.7 shows the utilization as 

function of percentage of malleable jobs in the workload for different flexibility. Figure 

6.8 shows utilization as function of flexibility for different job mix. From the results 

presented in Figure 6.7 it can be seen that the utilization increases and saturate at 20% job 

mix. The utilization at the saturation point increases as the flexibility increases. The 

utilization at the saturation point reaches the maximum possible at a flexibility of 62 

processors. Figure 6.8 (showing the same result in a different way) clearly demonstrates 
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that, for a given job mix, the utilization improves and reaches a saturation point at a 

certain flexibility. Increasing flexibility further does not improve the utilization. 

The reason for this behavior is that at lower flexibility, the running malleable can 

release fewer processors compared to higher flexibility. As a result the probability of 

accommodating a pending job to utilize idle processors becomes low at lower flexibility. 

As the flexibility increases the running malleable jobs can release more processors and 

they can also expand more to utilize idle processors. 

From the result presented in Table 6.6 and Figure 6.9 it can be seen that the 

change in flexibility does not impact the average turn around time in any significant way. 

For a low minimum number of processors (2 in these experiments), only the number of 

malleable jobs in the workload impacts the average turn around time. 

Table 6.5   Impact of flexibility of malleable job on utilization. Minimum processors: 2 
negotiation cost: 1.5 ms, adaptation cost: 2ms. 

%of 
Malleable 
Jobs 

Utilization 
14 
(2-16) 

30 
(2-32) 

46 
(2-48) 

62 
(2-64) 

78 
(2-80) 

94 
(2-96) 

110 
(2-112) 

126 
(2-128) 

10 0.86461 0.90117 0.91404 0.91949 0.92277 0.92494 0.92574 0.92574 
20 0.92978 0.97413 0.98862 0.99095 0.99454 0.99745 0.99683 0.99747 
30 0.94403 0.97482 0.98663 0.99048 0.99409 0.99677 0.99813 0.9993 
40 0.94996 0.97972 0.98922 0.9941 0.9985 0.99813 0.99824 0.99873 
50 0.94501 0.97416 0.9877 0.99301 0.99636 0.99802 0.99976 0.9998 
60 0.9504 0.98193 0.9912 0.99749 0.99825 0.99873 0.9994 0.9998 
70 0.94572 0.98252 0.98595 0.98888 0.99312 0.99574 0.99723 0.99849 
80 0.94963 0.97515 0.98865 0.99431 0.99825 0.99858 0.9984 0.99874 
90 0.94424 0.97468 0.98505 0.99232 0.99708 0.99821 0.99948 0.99979 

100 0.9555 0.98035 0.98943 0.99612 0.99893 0.99856 0.99935 0.99974 
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Figure 6.7    Variation of utilization as the number of malleable jobs changes in the 
workload for different flexibility. Minimum processors: 2, negotiation cost: 
1.5 ms, adaptation cost: 2ms. 
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Variation of  Utilization with Fexibility of Malleable Jobs 
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Figure 6.8    Variation of utilization with flexibility for different job mix. Minimum 
processors: 2, negotiation cost: 1.5 ms, adaptation cost: 2ms 

Table 6.6   Impact of flexibility of malleable job on avg. TAT. Minimum processors: 2 
negotiation cost: 1.5 ms, adaptation cost: 2ms. 

%of 
Malleable 
Jobs 

Average Turn Around Time (Seconds) 
14 

(2-16) 
30 

(2-32) 
46 

(2-48) 
62 

(2-64) 
78 

(2-80) 
94 

(2-96) 
110 

(2-112) 
126 

(2-128) 
10 102390 101677 101409 101487 101463 101444 101443 101443 
20 93540 92894 92898 92919 92900 92917 93008 93002 
30 92640 92701 92699 92698 92717 92726 92719 92724 
40 91831 91748 91843 91797 91788 91813 91813 91822 
50 91965 91893 91885 91914 91872 91911 91915 91913 
60 91400 91590 91423 91385 91458 91442 91553 91607 
70 88826 89074 89240 89422 89177 89150 89306 89184 
80 88184 88360 88256 87996 88074 88262 88015 88069 
90 89063 89088 89546 88863 88814 89248 89224 89398 

100 86293 86160 86136 86124 86125 86122 86118 86115 
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Impact of Flexibility on Avg. TAT for Fixed Minimum 
processor 
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Figure 6.9    Impact of flexibility of malleable jobs on utilization. Minimum processors: 
2, negotiation cost: 1.5 ms, adaptation cost: 2ms. 

6.5 Performance with the Variation of Negotiation Cost 

To investigate the impact of negotiation cost on performance, simulation 

experiments were conducted by varying the negotiation cost while keeping the adaptation 

cost constant. The adaptation cost per processor was fixed to 2 milliseconds. The 

negotiation cost was varied from 1.5 milliseconds to 8 seconds. Table 6.7 shows the 

impact of negotiation cost on utilization. Figures 6.10 and 6.11 graphically show the 

impact of negotiation cost on utilization. From Table 6.7 and Figure 6.10 it can be seen 

that the negotiation costs up to 0.8 second do not have any significant effect on 

utilization. As the negotiation cost increases further, the utilization decreases as the 
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number of malleable increases and after a point then the utilization starts increasing again 

as the number of malleable job increases further. Figure 6.11 shows variation of 

utilization as the negotiation cost increases for different job mixes. From the Figure 6.11 

and Table 6.7, it can be seen that for job mixes 10% and 100% the negotiation cost has no 

significant effect. For the other job mixes, the utilization decreases as the negotiation cost 

increases. The impact of negotiation cost is most profound in job mixes between the 

range 40%-60%. From Table 6.8 and Figures 6.12 and 6.13 similar trends can be 

observed for average turn around time. Table 6.9 shows the decrease in utilization and 

average turn around time for increasing negotiation cost from 1.5 milliseconds to 8 

seconds. 

The reason for this behavior is that as the number of malleable jobs in the 

workload increases the number of negotiation increases and reaches a maximum at a 

certain job mix. If the number of malleable jobs in the workload increases further the 

number of negotiation decreases and reaches a minimum at 100% malleable jobs. Table 

6.10 show the variation in the number of negotiations as the percentage of malleable jobs 

varies. Figure 6.14 presents the result graphically. When percentage of malleable job in 

the workload is low the need for negotiation is high, as there are many rigid jobs waiting 

in the pending queue. Because there are very few malleable jobs running, the scope of 

negotiation is low. As a result the number of negotiations is low. As the number of 

malleable jobs in the workload increases, the number of running malleable jobs also 
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increases. Consequently, the number of negotiation increases. However, as the number of 

malleable jobs in the workload increases further, there are more malleable jobs in the 

pending queue compared to rigid jobs. Because of it flexibility, a pending malleable job 

can be scheduled for execution as long as the number the idle processors is equal or more 

than the minimum processors requirement for the job. For this reason as the number of 

malleable job in the pending queue increases the need for negotiation also decreases. 

Table 6.7   Impact of negotiation cost on utilization  

Neg. 
Cost 
(secs.) 

Utilization 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
0.0015 0.92574 0.99747 0.9993 0.99873 0.9998 0.9998 0.99849 0.99874 0.99979 0.99974 
0.003 0.92574 0.99739 0.9993 0.99873 0.99979 0.99879 0.99849 0.99873 0.99979 0.99974 
0.006 0.92573 0.99738 0.99928 0.99949 0.99978 0.99983 0.999848 0.99873 0.99978 0.99974 
0.012 0.92573 0.99746 0.99926 0.99869 0.99976 0.99978 0.99846 0.99871 0.99977 0.99974 
0.024 0.92574 0.99739 0.99927 0.99866 0.99973 0.99974 0.99842 0.99868 0.99976 0.99974 
0.048 0.92571 0.99738 0.99923 0.99849 0.99964 0.99968 0.99817 0.99864 0.9993 0.99973 
0.096 0.92569 0.99725 0.99913 0.99862 0.99948 0.99948 0.9982 0.99537 0.99924 0.99972 

0.2 0.92564 0.99704 0.99866 0.99662 0.99866 0.99874 0.99758 0.99825 0.99951 0.9997 
0.4 0.92554 0.996 0.99697 0.99679 0.99729 0.99669 0.9968 0.997 0.99903 0.99965 
0.8 0.92512 0.99553 0.99642 0.9929 0.99527 0.99544 0.99472 0.99074 0.99729 0.99956 

2 0.92433 0.99307 0.99279 0.98726 0.98848 0.98816 0.9877 0.99096 0.99528 0.99923 
4 0.9221 0.9864 0.9816 0.97445 0.96888 0.97615 0.97734 0.98686 0.98974 0.99875 
8 0.92051 0.97961 0.96659 0.94554 0.94841 0.94637 0.95367 0.96609 0.96609 0.9967 
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Figure 6.11   Impact of negotiation cost on utilization. Flexibility range: 2- 128, 
adaptation cost: 2ms 
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Table 6.8  Impact of negotiation cost on average turn around time  

Neg Cost 
(Secs.) 

Average Turn Around Time (Seconds) 
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

0.0015 101443 93002 92724 91822 91913 91607 89184 88069 89398 86115 
0.003 101443 93003 92725 91822 91914 91608 89185 88070 89398 86115 
0.006 101443 93003 92725 91817 91915 91554 89186 88071 89399 86115 
0.012 101444 93005 92726 91843 91917 91590 89187 88073 89399 86115 
0.024 101445 93006 92742 91829 91918 91592 89192 88077 89401 86115 
0.048 101446 93007 92747 91852 91913 91523 89345 88090 89327 86115 
0.096 101447 92977 92740 91829 91959 91567 89385 88144 89332 86115 

0.2 101452 93061 92758 92078 92060 91549 89384 88424 89420 86115 
0.4 101461 93083 92939 91933 92117 91827 89448 88372 89363 86116 
0.8 101485 93156 92856 92477 92342 91915 89595 88570 89396 86117 

2 101581 93367 93278 92846 93026 92776 90359 88679 90057 86159 
4 101710 93921 94559 94777 94821 94181 90910 89306 90387 86144 
8 101902 94691 95637 97250 97339 96759 93732 92122 90857 86374 
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Figure 6.12   Impact of negotiation cost on avg. TAT. Flexibility range: 2- 128, 
adaptation cost: 2ms 
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Avg. TAT as Function of Negotiation Cost 
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Figure 6.13   Impact of negotiation cost on avg. TAT. Flexibility range: 2- 128, 
adaptation cost: 2ms 

Table 6.9   Decrease in performance as negotiation cost increased from 1.5 ms to 8 
seconds 

% of Mal. Jobs 10 20 30 40 50 60 70 80 90 100 
% Decrease in Utilization 0.52 1.79 3.27 5.32 5.14 5.34 4.48 3.27 3.37 0.30 
% Decrease in avg.TAT 0.45 1.82 3.14 5.91 5.90 5.62 5.10 4.60 1.63 0.30 
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Variation of Negotiation with Number of Malleable Jobs 
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Figure 6.14   Variation of number of negotiation with the variation of percentage of 
malleable jobs in the workload  

    

 

 

 

 

 
 

 

Table 6.10  Variation of number of negotiation with the variation of number of malleable 
jobs in the workload  

% of Malleable Number of 
Jobs Negotiation 

10 599 
20 1699 
30 2750 
40 3709 
50 4072 
60 6090 
70 6106 
80 4636 
90 2882 

100 306 
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6.6 Performance with the Variation of Adaptation Cost  

To investigate the impact of adaptation cost on performance, simulation 

experiments were conducted by varying the adaptation cost while keeping the negotiation 

cost constant. The negotiation cost was fixed at 1.5 milliseconds. The adaptation cost was 

varied from 2 milliseconds to 8 seconds. Table 6.11 shows the impact of adaptation cost 

on utilization. Figures 6.15, 6.16 and 6.17 graphically show the impact of adaptation cost 

on utilization. From the simulation results it can be seen that for adaptation costs up to 

0.2 second, the utilization does not vary significantly for any job mixes.  For 10% job 

mixes the adaptation cost does not effect utilization up to 1 second.  For 100% job mixes 

the adaptation cost doesn’t effect utilization up to 0.4 second. In general as the adaptation 

cost increases beyond 0.2 seconds the utilization decreases. The impact of adaptation cost 

is more profound on job mixes between 70% - 90%. From Table 6.11 and figure 6.15 it 

can be seen that for adaptation costs beyond 2 seconds, as the number of malleable jobs 

increases, the utilization increases initially but then it decreases. As number of malleable 

jobs further increases the utilization increases again. The reason for this behavior is that 

as the number of malleable jobs in the workload increases the number of negotiation 

increases, and consequently the number of adaptation increases and reaches a maximum 

at certain job mix. If the number of malleable jobs in the workload increases further the 

number of adaptation decreases and reaches a minimum at 100% malleable jobs. Table 

6.14 show the variation of number of adaptation as the percentage of malleable job 
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varies. From Figures 6.16 and 6.17 it can be seen that for all job mixes as the adaptation 

cost increases the utilization decreases more or less linearly.  A job mix 80% shows 

highest decrease. 

Table 6.12 and Figures 6.18, 6.19 and 6.20 show the impact of adaptation cost on 

average turn around time. The adaptation cost has no significant impact on average turn 

around time for job mixes 10% and 100%. For other job mixes trends similar to those 

seen in utilization can be observed. For all job mixes, the impact of adaptation cost on 

average turn around time is much less compared to the impact on utilization. 

Table 6.13 shows the decrease in utilization and average turn around time for 

increasing adaptation cost from 2 milliseconds to .08, 1 and 8 seconds. From the table it 

can be seen that, in general the decrease increases as the percentage of malleable jobs 

increases and reaches a maximum. After that the performance degradation improves as 

the number of malleable jobs increases further. The reason for this behavior is that as the 

number of malleable jobs in the workload increases the number of adaptation increases 

and reaches a maximum at certain job mix. If the number of malleable jobs in the 

workload increases further the number of adaptation decreases and reaches a minimum at 

100% malleable jobs.  
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Table 6.11  Impact of adaptation cost on utilization  

Adapt. 
Cost 

Utilization 
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

0.002 0.92574 0.99747 0.9993 0.99873 0.9998 0.9998 0.99849 0.99874 0.99979 0.99974 
0.004 0.92574 0.99733 0.99907 0.99894 0.99973 0.99974 0.99844 0.99879 0.99973 0.99971 
0.008 0.92574 0.99737 0.99882 0.99874 0.99961 0.99963 0.99852 0.99863 0.9996 0.99964 

0.01 0.92574 0.99727 0.99867 0.99867 0.9995 0.99958 0.99861 0.99847 0.99954 0.99961 
0.02 0.92574 0.99645 0.99879 0.99894 0.99923 0.99931 0.99797 0.99816 0.9989 0.99945 
0.04 0.92568 0.99618 0.99829 0.99801 0.99858 0.99882 0.99753 0.99769 0.99822 0.99913 
0.08 0.9267 0.99544 0.99737 0.99652 0.99747 0.99736 0.99668 0.99588 0.99708 0.99849 

0.2 0.92542 0.9899 0.99263 0.99259 0.99387 0.99505 0.99346 0.99192 0.99353 0.99658 
0.4 0.92512 0.98514 0.98681 0.98795 0.98917 0.98933 0.98866 0.98433 0.98802 0.99328 
0.8 0.9233 0.97772 0.97528 0.97671 0.97995 0.97863 0.98058 0.97214 0.97787 0.98677 

1 0.92256 0.97392 0.97156 0.97412 0.97773 0.97598 0.97581 0.96689 0.97184 0.98436 
2 0.91823 0.95577 0.95832 0.94937 0.95843 0.95465 0.95107 0.94149 0.94814 0.97086 
4 0.91612 0.94205 0.93835 0.92872 0.93403 0.9289 0.92023 0.89598 0.90425 0.94731 
8 0.9032 0.90535 0.90638 0.89453 0.90023 0.88113 0.87146 0.84255 0.86391 0.91249 
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Figure 6.15   Impact of adaptation cost on utilization. Flexibility range: 2- 128, 
negotiation cost: 1.5ms 
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Figure 6.16   Impact of adaptation cost on utilization. Flexibility range: 2- 128, 
negotiation cost: 1.5ms 
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Table 6.12  Impact of adaptation cost on average turn around time 

Adapt. 
Cost 

Average Turn Around Time (Seconds) 
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

0.002 101443 93002 92724 91822 91913 91607 89184 88069 89398 86115 
0.004 101443 93008 92741 91815 91918 91609 89187 88226 89402 86115 
0.008 101443 92995 92696 91817 91874 91612 89261 88109 89408 86116 

0.01 101443 93003 92756 91820 91968 91614 89008 88025 89411 86117 
0.02 101444 93017 92733 91859 91946 91540 89045 88244 89288 86119 
0.04 101452 93069 92828 91897 92019 91577 89265 88399 89300 86123 
0.08 101456 93134 92865 91959 92097 91567 89400 88376 89259 86133 

0.2 101475 93610 93197 92211 92279 91932 89493 88489 89670 86159 
0.4 101476 94007 93668 92605 92591 92057 89797 88964 90222 86200 
0.8 101391 94545 94761 93129 93081 92767 90145 89974 90609 86259 

1 101397 94722 94954 93262 93149 92852 90308 89866 90560 86267 
2 101566 96088 95352 94754 94143 93787 91494 91340 92057 86378 
4 101557 96500 96069 95469 95430 94421 92818 93935 94133 86556 
8 101793 97737 97504 96220 96064 95308 94386 95679 95812 86788 

Impact of Adaptation Cost 

0.82 

0.84 
0.86 

0.88 

0.9 
0.92 

0.94 

0.96 

0.98 
1 

1.02 

0 1 2 3 4 5 6 7 8 
Adaptation Cost (Secs.) 

Ut
ili

za
tio

n 

60% 

70% 

80% 

90% 

100% 

Figure 6.17  Impact of adaptation cost on utilization. Flexibility range: 2- 128, 
negotiation cost: 1.5ms 
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Figure 6.18   Impact of adaptation cost on average turn around time. Flexibility range: 2- 
128, negotiation cost: 1.5ms 
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Figure 6.19  Impact of adaptation cost on average turn around time. Flexibility range: 2- 
128, negotiation cost: 2ms 
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Impact of Adaptation Cost on Avg. TAT 
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Figure 6.20   Impact of adaptation cost on average turn around time. Flexibility range: 2- 
128, negotiation cost: 1.5ms 

Table 6.13 Decrease in performance as adaptation cost increased from 1.5 ms to 8 seconds  

% of Malleable Jobs 10 20 30 40 50 60 70 80 90 100 
% Decrease in 
Utilization (0.08 Sec) 0.03 0.767 0.68 0.61 0.59 0.48 0.50 0.68 0.63 0.316 
% Decrease in 
Utilization (1 Sec) 0.32 2.36 2.77 2.46 2.21 2.38 2.27 3.19 2.80 1.538 
% Decrease in 
Utilization (8 Sec) 2.25 9.21 9.29 10.42 9.96 11.87 12.70 15.62 13.59 8.725 
% Decrease in  Avg. 
TAT (0.08 Sec) 0.01 0.14 0.15 0.15 0.20 -0.05 0.24 0.35 -0.16 0.021 
% Decrease in  Avg. 
TAT (1 Sec) -0.05 1.85 2.40 1.57 1.34 1.36 1.26 2.04 1.30 0.18 
% Decrease in  Avg. 
TAT (8 Sec) 0.35 5.09 5.16 4.79 4.52 4.04 5.83 8.64 7.17 0.78 
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Table 6.14   Variation of number of Adaptation with the variation of number of malleable 
jobs in the workload  

% of Malleable Number of 
Jobs Adaptation 

10 599 
20 1699 
30 2750 
40 3709 
50 4072 
60 6090 
70 6106 
80 4636 
90 2882 

100 306 

6.7 Summary 

Results of simulation experiments to investigate the impact of RMS and workload 

parameters on system and application performance have been presented in this chapter. 

The impact of the following parameters on system and application performance has been 

investigated through simulation experiments. 1) The number of malleable jobs in the 

workload, 2) flexibility of malleable jobs, 3) cost of negotiation, and 4) cost of adaptation 

of malleable jobs. During the simulation experiments one of the parameters has been 

varied while other parameters have been kept constant.  

The performance in general improves with increase of percentage of malleable 

jobs in the workload and saturates at a certain job mix and it increases very little after 

saturation. The most important finding is that irrespective of cluster size, or base line 

utilization with an all rigid workload, it is possible to achieve maximum utilization with a 
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malleable workload. The maximum possible utilization can be achieved with relatively 

few malleable jobs (20% in our experiments).  

The performance in general improves as the flexibility increases up to certain 

flexibility. The performance than saturates. Increasing flexibility further does not 

improve performance. The impact of minimum processor of flexibility range has more 

impact on performance than the flexibility range itself. Decreasing the minimum number 

of processors for same the flexibility range increases the performance. 

Both negotiation cost and adaptations cost impact the performance. As these costs 

increases the performance decreases. Negotiation costs up to 0.8 second had no 

significant impact on performance. Negotiation cost does not impact 10% and 100% job 

mixes. For the same negotiation cost as the number of malleable job increases the 

utilization decreases, and then the utilization increases as the number of malleable 

increases further. The number of adaptations and the number of negotiations increase as 

the number of malleable job increases and they reach a maximum. After the maxima the 

number of negotiations and the number of adaptations decreases as the number of 

malleable jobs increases further. The impact of adaptation cost on performance more 

pronounced compared to the impact of negotiation cost. 

159 



www.manaraa.com

    

 

 

 

 

 

 

 

 

CHAPTER VII  

CONCLUSIONS AND FUTURE WORK 

Current resource management systems for clusters support mostly rigid 

applications. A few systems support moldable applications, where there is some 

flexibility in the amount of resources that can be assigned before the applications start. 

The dynamic nature of adaptive applications requires a new paradigm for cluster resource 

management.  If workloads contain rigid applications only, some of the processors may 

remain idle even though there are applications waiting in the queue to be executed. That 

is due to the fact that the available number of processors is not enough to satisfy the 

requirements of the waiting applications to be executed. However, if the workload 

contains malleable applications, they can utilize otherwise idle resources and improve 

performance. Conversely, malleable applications can shrink at a scheduler’s request to 

relinquish resources that can be allocated to evolving applications asking for resources, or 

to applications waiting in the pending queue. 

Existing resource management systems are not capable of handling malleable 

applications. The absence of RMS support is one of the major obstacles for application 

developers to write malleable applications. On the other hand, since there is an absence of 

malleable applications, researchers have not been sufficiently motivated to research and 
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develop RMS support for malleable applications. Management of malleable applications 

in a distributed environment is a multi-faceted problem and the research issues are 

complex and interrelated. The nature, complexities and relationship of these issues are 

not well researched and understood. Before developing malleable applications or 

infrastructure support for malleable applications, these issues needs to be investigated and 

studied in detail. One approach to address this problem is to develop a model for adaptive 

parallel systems and investigate and understand the behavior of these systems by 

numerically simulating the model. 

7.1 Contributions and Summary  

This dissertation makes several contributions to the research in the area of 

adaptive parallel systems. Specific contributions of this dissertation are described below. 

A conceptual model and subsequently, a semi-formal mathematical model have 

been developed for an adaptive parallel system. The system consists of a RMS capable of 

managing rigid as well as malleable applications, and workloads containing both rigid 

and malleable applications. The model of this system consists of three components: a 

model for the resource management system, a model for malleable and rigid applications, 

and a model for generating malleable workloads. The model can be used to investigate 

and understand the behavior of the system qualitatively and quantitatively under different 

conditions. 
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A discrete event simulator has been developed which can be used to numerically 

simulate the model of adaptive parallel systems. In particular the simulator can be used to 

determine the impact of the RMS, the application and the workload parameters on system 

and application performance. The simulator has been developed following the standard 

architecture for discrete even simulators. As a result the, simulator is modular and 

flexible enough to accommodate modification in the model with minimum rework. For 

example, to investigate the impact of different scheduling algorithms, one needs to 

modify the scheduler module without making changes to any other parts of the simulator. 

In this dissertation, the first detailed empirical evaluation of the impact of the 

RMS and the workload parameters on system and application performance has been 

reported. The key contribution of this dissertation is discovering the following new 

knowledge about adaptive parallel systems with malleable applications. 

1. The performance in general improves with an increase in the percentage of 

malleable jobs in a workload. The performance saturates at a certain 

rigid/malleable job mix and it increases very little after saturation. Also, a 

high percentage of malleable jobs is not necessary to make significant 

improvement in performance. 

2. The presence of malleable jobs in a workload decreases the average turn 

around time and the average wait time compared to a workload with all 
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rigid jobs. However, the presence of malleable applications increases the 

average execution time. 

3. In general the performance improves as the flexibility increases up to a 

certain point, than it saturates. The minimum number processors in the 

flexibility range has more impact on performance than the flexibility range 

itself. Decreasing the minimum number of processors for the same 

flexibility range increases the performance. 

4. The negotiation cost has a small impact on the performance. Small 

negotiation costs (costs up to one second) do not have any significant 

impact on the performance. If negotiation costs increase further, the 

performance decreases. 

5. For negotiation costs beyond 2 seconds, as the number of malleable jobs 

in a workload increases, the performance increases and reaches a 

maximum point. Increasing the number of malleable jobs further results 

into a decrease in the performance and it reaches a minimum. The 

performance starts increasing again as the number of malleable jobs 

increases further. 
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6. The number of negotiations for a given workload increases as number of 

malleable jobs increases up to a certain point. As the number of malleable 

jobs increases further the number of negotiations decreases, and it reaches 

a minimum as the percentage of malleable jobs reaches 100. 

7. The performance degrades as the application adaptation cost increases. 

The impact of the application adaptation cost is much more profound 

compared to that of the negotiation cost. 

Another contribution of this dissertation is the development of a prototype RMS 

system capable of managing malleable as well as rigid applications. Even though the 

prototype RMS is not robust enough to be of production quality, it provides valuable 

information regarding difficulties of developing an RMS for adaptive applications. As 

part of developing the prototype RMS, a negotiation protocol has also been developed. 

The following lessons have been learned from this exercise. 

1. Developing a communication infrastructure to manage negotiation 

between malleable applications and RMS is the most critical and difficult 

part. 

2. A negotiation mechanism that can handle ill-behaved malleable 

applications (such as an application that does not respond to a negotiation 

offers in a timely manner) is important. 
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3. Multistage scheduling is required to take advantage of malleable 

application to the full extent. 

7.2 Future Work 

The paradigm of adaptive applications is relatively new and not well understood. 

There are many issues that have not been addressed in this dissertation that are worth 

investigating in the future. 

In this dissertation, the algorithm adopted for scheduling is very simple. In 

particular, the selection of candidates for processor preemption is on a first start first 

candidate basis, which results into a high number of negotiations, and consequently a 

high number of adaptations. Further research in the scheduling algorithm is required, 

especially regarding a candidate selection policy with the goal of reducing the number of 

negotiations and adaptations. A scheduling algorithm involving a candidate selection 

policy, such as selecting a candidate which can give up the maximum number of 

processors and multistage scheduling, can be investigated.  

Further research to investigate the impact of failed negotiations, which has not 

been investigated in this research, also needs to be performed. In modeling a malleable 

application, some simplified assumptions have been made which are mostly applicable to 

embarrassingly parallel applications with no data dependency. Further research is 

required in modeling malleable applications which are not embarrassingly parallel, or 

have data dependency among tasks. 
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One area of future work is to investigate simulation outputs to discover 

relationship and dependencies among model parameters using statistical techniques. 

Another area of future research is to develop a programming model for adaptive 

applications. Moreover, future research is required in modeling of an adaptive system that 

includes evolving applications along with malleable applications. 
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