
www.manaraa.com

Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

1-1-2008

Modeling of an Adaptive Parallel System with Malleable Modeling of an Adaptive Parallel System with Malleable

Applications in a Distributed Computing Environment Applications in a Distributed Computing Environment

Sheikh Khaled Ghafoor

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Ghafoor, Sheikh Khaled, "Modeling of an Adaptive Parallel System with Malleable Applications in a
Distributed Computing Environment" (2008). Theses and Dissertations. 3149.
https://scholarsjunction.msstate.edu/td/3149

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3149&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/3149?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3149&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

www.manaraa.com

MODELING OF AN ADAPTIVE PARALLEL SYSTEM WITH MALLEABLE

APPLICATIONS IN A DISTRIBUTED COMPUTING ENVIRONMENT

By

Sheikh K. Ghafoor

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

December 2007

www.manaraa.com

Copyright by

Sheikh K. Ghafoor

2007

www.manaraa.com

MODELING OF AN ADAPTIVE PARALLEL SYSTEM WITH MALLEABLE

APPLICATIONS IN A DISTRIBUTED COMPUTING ENVIRONMENT

By

Sheikh K. Ghafoor

Approved:

Dr. Ioana Banicescu
Professor of Computer
Science and Engineering
(Major Professor and Joint
Dissertation Director)

Dr. Susan Bridges
Professor of Computer Science
and Engineering
(Committee Member)

Dr. Edward B. Allen
Associate Professor of Computer Science
Engineering
(Graduate Coordinator)

Dr. Roger King

Dr. Tomasz Haupt
Research Associate Professor

 Center for Advanced Vehicular Systems
(Committee Member and Joint

 Dissertation Director)

Dr. Thomas Phillip
Professor of Computer Science

 and Engineering
 (Committee Member)

Dr. Anthony Skjellum
Professor of Computer and Information and
Sciences
University of Alabama at Birmingham
(Committee Member)

Associate Dean, Research and Graduate Studies
Bagley College of Engineering

www.manaraa.com

Name: Sheikh K. Ghafoor
Date of Degree: December 2007
Institution: Mississippi State University
Major Field: Computer Science
Major Professor: Dr. Ioana Banicescu
Title of Study: MODELING OF AN ADAPTIVE PARALLEL SYSTEM WITH

MALLEABLE APPLICATIONS IN A DISTRIBUTED COMPUTING
ENVIRONMENT

Pages in Study: 173

Candidate for Doctor of Philosophy

Adaptive parallel applications that can change resources during execution,

promise increased application performance and better system utilization. Furthermore,

they open the opportunity for developing a new class of parallel applications driven by

unpredictable data and events. The research issues in an adaptive parallel system are

complex and interrelated. The nature and complexities of the relationships among these

issues are not well researched and understood. Before developing adaptive applications or

an infrastructure support for adaptive applications, these issues need to be investigated

and studied in detail. One way of understanding and investigating these issues is by

modeling and simulation. A model for adaptive parallel systems has been developed to

enable the investigation of the impact of malleable workloads on its performance. The

model can be used to determine how different model parameters impact the performance

of the system and to determine the relationships among them.

Subsequently, a discrete event simulator has been developed to numerically

simulate the model. Using the simulator, the impact of the variation in the number of

malleable jobs in the workload, the flexibility, the negotiation cost, and the adaptation

www.manaraa.com

cost on system performance have been studied. The results and conclusions of these

simulation experiments are presented and discussed, suggesting interesting insight for

further investigation.

In general, the simulation results reveal that the performance improves with an

increase in the number of malleable jobs in a workload, and that the performance

saturates at a certain percentage of rigid to malleable jobs mix. A high percentage of

malleable jobs is not necessary to achieve significant improvement in performance. The

performance in general improves as the flexibility increases up to a certain point; then, it

saturates. The negotiation cost impacts the performance, but not significantly. The

number of negotiations for a given workload increases as number of malleable jobs

increases up to a certain point, and then it decreases as number of malleable jobs

increases further. The performance degrades as the application adaptation cost increases.

The impact of the application adaptation cost on performance is much more significant

compared to that of the negotiation cost.

www.manaraa.com

DEDICATION

To my friend and life partner Kakon

ii

www.manaraa.com

ACKNOWLEDGMENTS

I would like to express my sincerest appreciation for the people who helped me in

many ways during the course of this dissertation. My earnest gratitude goes to my major

professor and joint dissertation director, Dr. Ioana Banicescu, who guided me throughout

my academic term here at Mississippi State University (MSU) with valuable advice,

constant encouragement . I would also like thank her for the patience to accommodate my

mistakes and to make me learn from them.

I am extremely grateful to Dr. Tomasz Haupt, joint dissertation director, for his

invaluable advice and gracious help throughout my dissertation work. I am grateful for

the generous financial support and research opportunities he has provided throughout my

appointment as Research Associate in the Center for Advanced Vehicular Systems

(CAVS) at MSU.

I am grateful to Dr. Susan M. Bridges, member of my graduate committee, for her

invaluable advice and gracious help throughout my graduate studies. I would also like to

gratefully acknowledge Dr. Thomas Philip and Dr. Anthony Skjellum for serving as

members in my graduate committee, and providing me with helpful suggestions and

comments.

I wish to thank all the faculty members at the Department of Computer Science

and Engineering whom I have come across and learned my way into the world of

iii

www.manaraa.com

teaching and research. I would like to take this opportunity to acknowledge the support

for infrastructure and resources needed in this work as provided by CAVS at MSU. A

special appreciation goes to my colleagues and fellow Vortal group students at CAVS

specially to Greg, Anand, Igor, Bhargavi, Mahbubur, Satya and Nisreen. I would like to

specially acknowledge the friendly staff at the Department of Computer Science and

Engineering (Brenda Collins, Jo Coleson, and Brandi Velcek), who was always willing to

help me with anything and everything that I needed during my time at MSU

On a personal note, I wish to express my heartfelt gratitude to my spouse and

friend, Ambareen without whose love, sacrifice & support, I would not come this far.

iv

www.manaraa.com

TABLE OF CONTENTS

Page
DEDICATION... ii

ACKNOWLEDGMENTS ... iii

LIST OF FIGURES ... viii

LIST OF TABLES... xiii

LIST OF NOMENCLATURE .. xv

CHAPTER

I. INTRODUCTION .. 1
1.1 Adaptive Parallel Applications ... 1
1.2 A Resource Management System for Adaptive Parallel Applications ... 6
1.3 Motivation ... 8
1.4 Research Issues in an Adaptive Parallel System 10

1.4.1 The Communication and Negotiation with Running Applications 10
1.4.2 The Negotiation Management .. 10
1.4.3 The Scheduling .. 11
1.4.4 Programming Model for Adaptive Applications 11
1.4.5 Overall Model of an Adaptive Parallel System 12

1.5 Ongoing Work in Adaptive Parallel Systems ... 12
1.6 Dissertation Objectives ... 13
1.7 Hypothesis ... 14
1.8 Contributions ... 14
1.9 Organization .. 16

II. BACKGROUND AND RELATED WORKS ... 17
2.1 RMS and Language Support for Adaptive Parallel Applications 17
2.2 Scheduling of Adaptive Applications ... 25
2.3 Programming Model for Adaptive Applications 28
2.4 Limitation of Existing Research ... 31

v

www.manaraa.com

CHAPTER .. Page

III. THE ADAPTIVE PARALLEL SYSTEM .. 33
3.1 Description of an Adaptive Parallel System ... 35

3.1.1 Use Cases for an Adaptive Parallel System 36
3.1.1.1 Use Case: Submission of a New Application 36
3.1.1.2 Use Case: Completion of a Running Application 38
3.1.1.3 Use Case: Resource Released by a Running Evolving

Application .. 38
3.1.1.4 Use case: Evolving Application Requesting Additional

Resources .. 39
3.1.2 Requirements of an Adaptive Parallel System 41

3.2 Conceptual Model of an Adaptive Parallel System 42
3.2.1 Adaptive Applications ... 42
3.2.2 Resource Management System .. 44

3.2.2.1 Server .. 46
3.2.2.2 Node Controller .. 48
3.2.2.3 Scheduler ... 48
3.2.2.4 Negotiator ... 49
3.2.2.5 Dispatcher ... 50

3.2.3 Users ... 50
3.2.4 Relationship between the Components 51

3.3 Mathematical Model ... 55
3.3.1 Assumptions ... 56
3.3.2 Workload .. 57
3.3.3 Application ... 59
3.3.4 Negotiation ... 61
3.3.5 Adaptation Cost ... 62
3.3.6 Performance Metrics .. 63

3.4 Summary ... 65

IV. SIMULATOR FOR AN ADAPTIVE PARALLEL SYSTEM 67
4.1 Discrete Event Simulator .. 67
4.2 Simulator for Adaptive Parallel System ... 70

4.2.1 System State ... 71
4.2.2 Executive .. 72
4.2.3 Initialization Routine ... 75
4.2.4 Scheduler .. 76
4.2.5 Negotiator .. 78
4.2.6 Dispatcher .. 80
4.2.7 Implementation .. 84

4.3 Prototype Resource Management System .. 84
4.3.1 Architecture and Implementation .. 86
4.3.2 Resource Negotiation Protocol .. 90

vi

www.manaraa.com

CHAPTER .. Page

4.3.3 Workload .. 93
4.3.4 Application ... 95
4.3.5 Results and Analysis .. 96

V. VALIDATION .. 103
5.1 Evaluation Method .. 105

5.1.1 Individual Application Data ... 105
5.1.2 Group Data ... 106

5.2 Experimental Data .. 107
5.3 Experimental Results .. 108

5.3.1 Simulation with Rigid Data ... 109
5.3.2 Simulation with Malleable Data .. 111

5.4 Summary ... 122

VI. EXPERIMENTAL RESULTS ... 124
6.1 Experimental Design.. 124
6.2 Experimental Data .. 128
6.3 Performance with the Variation of Number of Malleable Jobs in

Workload... 130
6.4 Performance with the Variation of Flexibility of Malleable Jobs............ 135
6.5 Performance with the Variation of Negotiation Cost 144
6.6 Performance with the Variation of Adaptation Cost................................ 151
6.7 Summary ... 158

VII CONCLUSIONS AND FUTURE WORK .. 160
7.1 Contributions and Summary .. 161
7.2 Future Work .. 165

REFERENCES .. 167

vii

www.manaraa.com

LIST OF FIGURES

FIGURE Page

3.1 Research methodology .. 34

3.2 Diagram of interactions for the use case “submission of a new application”...... 37

3.3 Diagram of interactions for the use case “completion of a running application” 38

3.4 Diagram of interactions for the use case “resource released by a running evolving
application”.. 39

3.5 Diagram of interactions for the use case “evolving application requesting
 additional resources” .. 41

3.6 Component of an adaptive RMS.. 46

3.7 Conceptual model of an adaptive parallel system.. 52

3.8 Collaboration diagram of the conceptual model for an adaptive parallel system 54

4.1 Flow control of discrete event simulator ... 70

4.2 Organization of the simulator for an adaptive parallel system 72

4.3 Algorithm for the simulation executive ... 73

4.4 Flow diagram for the simulation executive ... 74

4.5 Algorithm for the initialization routine.. 75

4.6 Algorithm for the scheduler ... 78

viii

www.manaraa.com

FIGURE Page

4.7 Flow diagram for the scheduler ... 79

4.8 Algorithm for the negotiator .. 80

4.9 Flow diagram of the negotiator.. 81

4.10 Algorithm for the dispatcher.. 82

4.11 Flow diagram for the dispatcher .. 83

4.12 Architecture of the prototype RMS.. 85

4.13 Finite state representation of the negotiation protocol....................................... 93

4.14 Utilization as function of job-mix.. 100

4.15 Utilization as function of flexibility... 100

4.16 Utilization as function of percentage of malleable jobs..................................... 101

4.17 Schedule span as function of job-mix.. 101

4.18 Turn around time as function of job-mix... 102

4.19 Average execution, turn around, and wait time as function of job-mix 102

5.1 Experimental procedure with the simulator... 103

5.2 Comparison of start time of simulator and SDSC output 109

5.3 Comparison of completion time of simulator and SDSC output 109

5.4 Comparison of start time of simulator and prototype output............................... 110

5.5 Comparison of completion time of simulator and prototype 110

5.6 Comparison of start time of for malleable data set 1 (10% job-mix) 113

ix

www.manaraa.com

FIGURE Page

5.7 Comparison of completion for malleable data set 1 (10% job-mix).................... 113

5.8 Comparison of start time of for malleable data set 2 (33% job-mix) 114

5.9 Comparison of completion for malleable data set 2 (33% job-mix).................... 114

5.10 Comparison of start time of for malleable data set 3 (50% job-mix) 115

5.11 Comparison of completion for malleable data set 3 (50% job-mix).................. 115

5.12 Comparison of start time of for malleable data set 4 (75% job-mix) 116

5.13 Comparison of completion for malleable data set 4 (75% job-mix).................. 116

5.14 Comparison of start time of for malleable data set 5 (100% job-mix) 117

5.15 Comparison of completion for malleable data set 5 (100% job-mix)................ 117

5.16 Comparison of utilization between simulator output and real system for
data sets 1-5 ... 119

5.17 Comparison of average turn around time between simulator output and real system
for data sets 1-5 ... 120

5.18 Comparison of utilization between simulator and prototype............................. 120

5.19 Comparison of average turn around time between simulator and prototype 121

5.20 Variation of utilization and average turn around time with the variation of
percentage of malleable job for 1200 Synthetic workloads 122

6.1 Utilization for workload size 1000 jobs, 3000 jobs and 5000 jobs...................... 130

6.2 Variation of utilization with the number of malleable jobs in the workload.
Negotiation cost: 1.5 ms, adaptation cost: 2 ms .. 132

x

www.manaraa.com

FIGURE Page

6.3 Variation of average turn around time with the number of malleable jobs for
data set 1. Negotiation cost: 1.5 ms, adaptation cost: 2 ms 134

6.4 Variation of average execution, wait, and turn around time as the number of
malleable jobs increases. Flexibility range: 2- 128, negotiation cost: 1.5ms,
adaptation cost: 2ms, cluster size: 256 nodes.. 135

6.5 Variation of utilization with minimum number of processor on performance
for data set 1. Flexibility: 126 processors, negotiation cost: 1.5 ms,
adaptation cost: 2ms. ... 138

6.6 Variation of avg. TAT with minimum number of processor on performance
for data set 1. Flexibility: 126 processors, negotiation cost: 1.5 ms,
adaptation cost: 2ms. ... 140

6.7 Variation of utilization as the number of malleable jobs changes in the workload
 for different flexibility. Minimum processors: 2, negotiation cost: 1.5 ms,
adaptation cost: 2ms. ... 142

6.8 Variation of utilization with flexibility for different job mix. Minimum
 processors: 2, negotiation cost: 1.5 ms, adaptation cost: 2ms 143

6.9 Impact of flexibility of malleable jobs on utilization. Minimum processors: 2,
negotiation cost: 1.5 ms, adaptation cost: 2ms. ... 144

6.10 Impact of negotiation cost on utilization. Flexibility range: 2- 128, adaptation
 cost: 2ms.. 147

6.11 Impact of negotiation cost on utilization. Flexibility range: 2- 128, adaptation
 cost: 2ms.. 147

6.12 Impact of negotiation cost on avg. TAT. Flexibility range: 2- 128, adaptation
 cost: 2ms.. 148

6.13 Impact of negotiation cost on avg. TAT. Flexibility range: 2- 128, adaptation
 cost: 2ms.. 149

xi

www.manaraa.com

FIGURE Page

6.14 Variation of number of negotiation with the variation of percentage of
malleable jobs in the workload ... 150

6.15 Impact of adaptation cost on utilization. Flexibility range: 2- 128, negotiation
 cost: 1.5ms... 153

6.16 Impact of adaptation cost on utilization. Flexibility range: 2- 128, negotiation
cost: 1.5ms... 154

6.17 Impact of adaptation cost on utilization. Flexibility range: 2- 128, negotiation
 cost: 1.5ms... 155

6.18 Impact of adaptation cost on average turn around time. Flexibility range: 2-128,
negotiation cost: 1.5ms.. 156

6.19 Impact of adaptation cost on average turn around time. Flexibility range: 2-128,
negotiation cost: 2ms... 156

6.20 Impact of adaptation cost on average turn around time. Flexibility range: 2-128,
negotiation cost: 1.5ms.. 157

xii

www.manaraa.com

LIST OF TABLES

TABLE Page

1.1 Classification of parallel applications .. 1

3.1 Object relationship and information flow.. 55

4.1 Utilization, schedule span and average TAT for different job mix in workload . 99

4.2 Average execution time, turn around time and wait time for different job mix in
workload.. 99

5.1 Malleable workload from prototype system .. 108

5.2 Malleable workload generated synthetically ... 108

5.3 Comparison of utilization and average turn around time..................................... 111

5.4 Parameters for simulation with malleable applications 112

5.5 Mean and standard deviation of distance of start time and completion time....... 118

5.6 Comparison of utilization and average turn around time between simulator
output and real System ... 119

5.7 Trend in utilization and average turn around time for synthetic workload.......... 122

6.1 Utilization for workload size 1000 jobs, 3000 jobs and 5000 jobs...................... 129

6.2 Variation of performance with change in number of malleable jobs in the
workload. Negotiation cost: 1.5 ms, adaptation cost: 2 ms. 131

6.3 Flexibility range for experiment set one .. 136

xiii

www.manaraa.com

TABLE Page

6.4 Impact of minimum number of processor on performance. Flexibility: 126
processors, negotiation cost: 1.5 ms, adaptation cost: 2ms 137

6.5 Impact of flexibility of malleable job on utilization. Minimum processors: 2
negotiation cost: 1.5 ms, adaptation cost: 2ms. ... 141

6.6 Impact of flexibility of malleable job on avg. TAT. Minimum processors: 2
negotiation cost: 1.5 ms, adaptation cost: 2ms .. 143

6.7 Impact of negotiation cost on utilization .. 146

6.8 Impact of negotiation cost on average turn around time...................................... 148

6.9 Decrease in performance as negotiation cost increased from 1.5 ms to 8 seconds 149

6.10 Variation of number of negotiation with the variation of number of malleable
jobs in the workload ... 150

6.11 Impact of adaptation cost on utilization .. 153

6.12 Impact of adaptation cost on average turn around time..................................... 155

6.13 Decrease in performance as adaptation cost increased from 1.5 ms to 8 seconds 157

6.14 Variation of number of adaptation with the variation of number of malleable
jobs in the workload .. 158

xiv

www.manaraa.com

LIST OF NOMENCLATURE

Adaptive RMS An RMS capable of managing rigid as well as
malleable application.

Adaptive Parallel Application A parallel application that can change number of
processor during execution.

Adaptive Parallel System A system that consists of a adaptive RMS managing a
cluster of nodes, and a set of parallel applications
containing rigid, as well as malleable applications.

Job A parallel or sequential application submitted by a user
for execution to a computer system.

Workload A set of independent jobs submitted to s system for
execution. Each job has an arrival time, resource
requirement, and execution time.

Rigid Workload A workload consists of rigid jobs only
Malleable Workload A workload consists of a mixture of rigid and

malleable jobs or malleable jobs only.
Arrival Time Ta - The time when an application is submitted for

execution.
Start Time Tc - The time when a job start executing (running) on

computing node(s).
Completion Time Tc - The time when a job finish executing (running) on

computing node(s)
Execution Time Te - The difference between start time and completion

time of a job.
Rigid Execution Time Execution time of a job if it executes as a rigid job.
Turn Around Time TAT – The difference between arrival time and

completion time of a job.
Average Turn Around Time TAT – The average of TAT of all jobs in a workload.
Schedule Span Time between the arrival of first job and completion of

last job in workload.
Utilization U – Fraction of total CPU cycles jobs in workload are

executing during the schedule span.

xv

www.manaraa.com

CHAPTER I

INTRODUCTION

This dissertation addresses the problem of modeling and simulation of an adaptive

parallel system with malleable applications in a distributed environment. In order to

demonstrate the utility of simulation environment, we present results, analysis, and

interpretations of simulation experiments with malleable applications in an adaptive

parallel system. The purpose of this chapter is to outline the research work conducted,

provide necessary background, present the motivation for the research, postulate the

research hypothesis, discuss contributions, and clarify the terminology used throughout

the document.

1.1 Adaptive Parallel Applications

Feitelson and Rudolph [1] classified parallel applications into four groups based

on who decides the number of processors to be used by a parallel application and on

when the decision is made. The classification is shown in Table 1.1.

Table 1.1 Classification of parallel applications

Who decides When decided
At submission During execution

Application Rigid Evolving
System Moldable Malleable

1

www.manaraa.com

A rigid application requires a certain number of processors as specified by the

user at application submission time, and it cannot execute with fewer processors or make

use of any additional processors. In the case of a moldable application, the number of

processors assigned is determined by the system scheduler within certain constraints and

the application may use only that particular number of processors throughout its

execution. An evolving application may initiate a change in the number of processors

during execution. In the case of a malleable application, the number of processors

assigned to an application may change during execution as a result of the system offering

it additional processors or requiring that the application releases some. Throughout this

dissertation we define adaptive applications as applications that are evolving or

malleable according to Feitelson’s classification. The change in resource requirements in

an evolving application is triggered by the application itself due to the nature of the

problem and employed algorithms, while in malleable applications, change is triggered

by events external to the application such as changes in hardware availability,

applications of higher priority requiring more resources, and others reasons.

Characteristics of Adaptive Parallel Applications: There are many scientific and

engineering applications which work with large input data and are computationally

intensive. Some of these applications are highly parallel (including embarrassingly

parallel) in nature. Among these there are highly scalable applications operating over a

long range of resources. The total amount of computation for these applications does not

vary from execution to execution for the same input data. Currently, these applications

are implemented as rigid or moldable parallel applications. These types of applications

2

www.manaraa.com

are good candidates for conversion to malleable applications where the resource

management system (RMS) can provide them with idle resources whenever available and

take away resources whenever high priority applications or other evolving applications

need them.

Examples of evolving applications with predictable computation are parallel

applications where computational workload varies during the execution due to nature of

the problem, the employed algorithm, and an unpredictable non-uniform distribution of

input data. The total computational workload of these applications does not vary from

execution to execution for the same input data. The parallel Fast Multipole algorithm for

N-body simulation is an example of such applications [2][3]. The N-body simulations

consider N particles, their positions and velocities, and the problem is to compute the

forces they exert on each other, and then calculate their new positions. This problem has

been widely used in a broad class of application areas of science such as astrophysics,

molecular dynamics, biophysics, molecular chemistry, and others. Even though the

amount of total computation does not vary, due to the nature of algorithm, the

computational requirements and consequently, the resource requirements of these types

of applications change during a single run.

There are evolving applications in the fields of science and engineering where

computational workload varies from execution to execution for the same input data. An

example of such a field is weather prediction. Traditional weather forecasting systems are

static in nature. They run simulations on a pre-scheduled space and forecasting time.

Such systems cannot respond to mesoscale weather changes that can appear suddenly and

3

www.manaraa.com

evolve rapidly. The researchers are working on the next generation of forecasting systems

which will adapt dynamically both in time and space. The simulations will generate

successive forecasts more frequently, and they will run on higher resolution grids for

more accurate predictions. The resource requirements (processors, disk storage and

network bandwidth) of such applications change dynamically during execution. One of

the major obstacles of realizing such adaptive weather prediction systems is the absence

of “adaptive cyber infrastructure” capable of supporting adaptive applications [4][5]. The

amount of computation of these types of applications varies from execution to execution,

even for same input data due to unpredictable conditions that can occur during execution.

The resource requirements of such an application may also vary during its executions and

cannot be determined precisely before the execution starts. Such applications are an

example of evolving applications.

In general adaptive applications may have the following characteristics:

1. In a parallel application, the amount of computation for the same input data may

remain the same from one execution to another or it may vary due to

unpredictable events or data during execution. One may expect that the amount of

computation for malleable applications will be constant, while for evolving

applications the amount of computation may change during execution. That

would require consumption of additional resources or release of idle resources.

2. Applications may have certain resource utilization characteristics. They may not

be able to utilize any arbitrary amount of resources between a maximum and a

minimum amount. For example, many applications require that the number of

4

www.manaraa.com

processors be a power of two. If such an application is running on eight

processors, it would not be able to utilize four additional processors or release two

processors. However it may be able to utilize eight additional processors if

allocated or release four processors if required.

3. Adaptive applications consist of phases. The amount of resource consumed within

a phase remains unchanged. Applications can change resource consumption at

phase boundaries. Parallel applications have natural breakpoints where processes

of an application can synchronize, exchange data, or redistribute data among

themselves. As a result, in such applications, adaptation (consumption of

additional resources or release of idle resources) can occur at these breakpoints,

not arbitrarily at any point in time during execution. If a malleable application is

allocated additional resources or asked to release some resources, it consumes or

releases resources at the next breakpoint where it can reconfigure itself to

consume or release resources. Consequently, there may be a time gap between the

adaptation decision by the Resource Management System (RMS) (asking an

application to consume or release resources), and the actual adaptation

(consumption or release of resources). The interval between two consecutive

breakpoints constitutes a phase. Rigid and moldable applications have only one

phase while evolving and malleable applications have multiple phases.

4. Both malleable and evolving applications require communications and negotiate

resources with the RMS. The negotiations can be initiated either by the RMS in

5

www.manaraa.com

case of malleable applications or by the applications in case of evolving

applications.

1.2 A Resource Management System for Adaptive Parallel Applications

An adaptive parallel system is defined as a system that consists of a Resource

Management System (RMS) managing a cluster of nodes and a set of parallel

applications containing rigid as well as malleable applications. The goal of an RMS is to

provide support for efficient utilization of computational resources and for resolving

conflicts of interests between the end users. The schedule determines the order in which

the applications are executed on computing nodes. The schedule is generated according

to system policies. The RMS functionality also includes actual resource allocation

(submitting the applications) or de-allocation (terminating the applications), and reporting

the applications’ status (such as pending, running, or completed) to the system

administrator and to the end users. To perform its functions, the RMS monitors its

resources and accepts messages about resource status changes such as a processor failure,

or application completion and a resulting release of resources. Typically, an RMS has

two main components: the server and the node controllers.

The Server: The server is the central coordinator of the RMS and is responsible

for gathering information about the available resources, accepting applications from the

users, organizing those applications in queues, and initiating a schedule cycle. Once a

schedule is contrived, the server contacts the individual node controllers which place

applications into execution. The server contains a scheduler that computes a schedule

6

www.manaraa.com

when the server initiates a scheduling cycle. The scheduler implements a scheduling

algorithm to satisfy the system policies taking into account the current status of the

system (i.e. information about the state of the resources and queued applications). The

generation of a schedule is triggered by scheduling events. Traditional RMS has two

types of scheduling events: i) submission of an application by user, ii) termination of a

running application.

The Node Controller: There is one node controller for each computing node and

each acts as an agent of the server. The node controller starts and controls applications on

the nodes and reports node and application status to the server.

If a workload contains malleable and evolving applications in addition to rigid

applications, a traditional RMS will require additional functionalities to manage adaptive

applications. In an adaptive parallel system, while computing a schedule, if enough

resources are not available, the RMS has the option of preempting resources from

running malleable applications. When running evolving applications require additional

resources, they must ask the RMS for resources and the RMS must consider these

requests while computing a schedule. Multiple evolving applications may request

additional resources at the same time. The RMS must be able to handle multiple

simultaneous resource requests from evolving applications efficiently. If idle resources

are available and there are no pending applications, they may be allocated to running

malleable applications. If computing a schedule involves preemption of resources from

multiple malleable applications and/or allocation of resources to multiple evolving

applications, the RMS must communicate and negotiate with all these running

7

www.manaraa.com

applications within a single scheduling cycle. The RMS must also efficiently manage

these negotiations with multiple applications in a single scheduling cycle.

1.3 Motivation

Current resource management systems for clusters primarily support rigid

applications. A few systems support moldable applications, where there is some

flexibility in the amount of resources that can be assigned before the applications start.

However, the resources are fixed once the applications start execution. A new paradigm

for cluster resource management is required as result of the dynamic resource

requirements of adaptive applications, as well as of the unpredictability of resource

utilization in a cluster. On one hand, an evolving application may require additional

resources during execution to accomplish its objectives or relinquish resources not

needed for its level of current workload. On the other hand, changes in the computing

environment may require that a currently executing application be malleable. In this case,

the application should be capable of relinquishing currently assigned resources for use by

other applications, which are critical, or be capable of using additional resources that are

otherwise idle, for earlier completion.

In addition to the possibility of underutilizing resources, fixing the number of

processors assigned to an application may also prevent another application with a higher

priority or revenue from being started due to an insufficient number of available

processors in the system. To retain the capability of the system to immediately start

higher priority applications without preempting running applications and to avoid the

8

www.manaraa.com

penalty for lost opportunities, it makes sense for the resource manager to be able to

request processors from currently executing applications that have lower priorities or

revenues.

Enabling the execution of malleable and evolving applications on clusters leads to

the potential of birth of a new paradigm for cluster computing. This paradigm will

provide a framework for improving the utilization of existing clusters by allowing idle

resources to be assigned to currently executing applications. It will also provide a

framework for supporting mission-critical applications on general-purpose clusters by

allowing a reassignment of already committed resources and excluding the need for

expensive dedicated resources. The paradigm has the potential to improve the capability,

responsiveness, and efficiency of existing clusters, as well to create new ways of utilizing

current technologies for emerging applications characterized by dynamic resource

requirements. It will also open up the opportunity of implementing a new class of parallel

applications driven by unpredictable data and events. The paradigm will further propel

the research for fundamental understanding of evolving and malleable applications, and

their interactions with resource management systems and scheduling techniques, leading

to the design and building of supportive computing system software.

The research issues in an adaptive parallel system are complex and interrelated.

The nature, complexities and relationship of these issues are not well researched and

understood. Before developing adaptive applications or an infrastructure support for

adaptive applications these issues need to be investigated and studied in detail. One way

of understanding and investigating these issues is by modeling and simulation. Modeling

9

www.manaraa.com

and simulation of an adaptive parallel system will help us to understand, analyze and

predict the behavior of adaptive applications and of the new RMS.

1.4 Research Issues in an Adaptive Parallel System

From the description presented in sections 1.1 and 1.2, it is evident that the

management of adaptive applications in a cluster environment is a complex and multi-

faceted problem. Some of the most important research issues are described below.

1.4.1 The Communication and Negotiation with Running Applications

In the current job-scheduling paradigm, once a job starts executing, no

communication takes place between the application and the RMS. In an adaptive parallel

system, communication and negotiation between the RMS and adaptive application is

necessary. One of the research problems in an adaptive parallel system is concerned with

what would be the communication mechanism and negotiation protocol between the

adaptive applications and the RMS and with how the negotiation would be carried out.

1.4.2 The Negotiation Management

In an adaptive parallel system the need for negotiations arises from the

characteristics of adaptive applications. These negotiations need to be managed

efficiently, and that is a complex problem. For example when there are multiple requests

from several running evolving applications, the RMS can initiate a scheduling cycle for

every request, or it can group a set of requests and handle them together. Also, during

10

www.manaraa.com

computation of a schedule, the RMS has to communicate and negotiate with multiple

running applications. These negotiations may be carried out sequentially one after

another. Alternatively, they can be carried out in parallel. Different negotiation

management strategies would require different design and implementations of the RMS

and they may impact the performance of the system and applications in different ways.

1.4.3 The Scheduling

Scheduling algorithms for adaptive applications are more complex than those for

rigid applications. The scheduler has to respond in a timely manner to the demands of

both running and queued applications. If enough resources are not available, it has to

choose resource preemption candidates among running malleable applications. When idle

resources are available, the algorithm must decide how to allocate the idle resources

among the running malleable applications. If multiple evolving applications are

requesting additional resources and if enough resources are not available even after

preemption, the scheduling algorithm has to decide how to address those requests.

Essentially, scheduling in an adaptive parallel system is a multi-step procedure that

involves computing a schedule, negotiation with running applications, and re-computing

the schedule. The re-computation of a schedule may result in requiring further

negotiations.

1.4.4 Programming Model for Adaptive Applications

The structure of adaptive applications is different from that of rigid applications.

They need to communicate and negotiate with the RMS using a protocol that the RMS

11

www.manaraa.com

understands. Adaptive applications require reconfiguring themselves when additional

resources are consumed or idle resources are released. The reconfiguration may require

data redistribution, creation of new processes or deletion of existing processes etc.

Currently, to the best of our knowledge, there is no programming model which captures

all the aspects of an adaptive parallel application.

1.4.5 Overall Model of an Adaptive Parallel System

The research issues mentioned above are not independent but interrelated. For

example, computing a schedule may involve negotiations with running adaptive

applications. Consequently, the outcome and cost of scheduling depends on how

negotiation is carried out and managed. The negotiation involves the RMS and the

running applications. As a result, the characteristics and the model of adaptive

applications influence the negations. The interdependencies and relationships of

scheduling, negotiation, and application behaviors impact the overall architecture of an

adaptive RMS. The relationships among these research issues and their overall impact on

the model of an adaptive parallel system are not yet very well understood.

1.5 Ongoing Work in Adaptive Parallel Systems

This section presents a brief summary of related research in adaptive parallel

systems, while a detail review of related research is presented in Chapter II. The adaptive

parallel system is not a well-researched area in computer science. Some research has been

conducted on scheduling of moldable and malleable applications [6][7][8][9]. Some work

has been accomplished on developing infrastructure support for adaptive applications

12

www.manaraa.com

[10][11][12][13][14][15]. None of these efforts have explicitly targeted the

communication and negotiations between the applications and the RMS or dynamic

resource reallocation that are imperative to support adaptive applications.

We have been working on developing infrastructure support for adaptive

applications in cluster environments. The outcome of our efforts so far has been reported

in [16][17][18]. A protocol for resource negotiation between adaptive applications and

the RMS has been developed. Experiments with prototype implementations show that the

protocol works. It covers a wide range of interaction scenarios between applications and

the RMS, and the overhead of the protocol is very low [16]. We have also proposed an

architecture for an RMS capable of managing adaptive applications. An early prototype

implementation indicates that developing a robust RMS capable of managing adaptive

applications in cluster environment is possible, and that adaptive applications show

promise for improving system performance [7][18]. However, during our research work,

we have realized that the area of adaptive parallel applications and system support for

executing such applications is not a well-researched area in computer science. The

properties of adaptive applications, their impact on the RMS and on the middleware are

not well understood and require further investigations. This leads to our current research

effort on modeling an adaptive parallel system as a whole to understand and analyze

properties of adaptive applications, the RMS, and their effects on each other.

1.6 Dissertation Objectives

The context of this dissertation is to develop a model for an adaptive parallel

system with malleable applications and to investigate it using simulation. In general, the

13

www.manaraa.com

presence of malleable applications imposes new requirements on all the components of

an adaptive parallel system. The dissertation objective is to investigate the impact of

these requirements by modeling and simulation. In particular, the objectives of this

dissertation are to investigate the impact of the characteristics of the workload and those

of the RMS on system performance. More specifically, the effect of the number of

malleable applications in the workload, their flexibility, cost of negotiation, and cost of

adaptation on system performance will be investigated.

1.7 Hypothesis

A model for adaptive parallel systems can be developed to enable the

investigation of the impact of malleable workloads on its performance. The model can be

used to determine how different model parameters impact the performance of the system

and, to develop a better understanding of the relationships among them. This model can

be used to predict the performance variation in the presence of malleable applications as

opposed to the same applications being rigid.

1.8 Contributions

The primary contribution of this dissertation is the design and implementation of a

model for an adaptive parallel system, and the demonstration of how this model can be

used to gain new knowledge about the impact of the model parameters on performance of

the adaptive parallel system. The main contributions of the dissertation are summarized

below.

14

www.manaraa.com

The design and implementation of:

a. A conceptual model and subsequently a semi-formal mathematical model
for an adaptive parallel system.

b. A model for generating malleable workload.

c. A discrete event simulator to numerically simulate models of adaptive
parallel systems. In particular, the simulator can be used to determine the
impact of RMS, application and workload parameters on system
performance.

d. A prototype RMS system capable of managing malleable as well as rigid
applications.

- The demonstration of model utility through discovery of the following

knowledge about an adaptive parallel system with malleable applications:

e. The performance in general improves with an increase in number of
malleable jobs in a workload and the performance saturates at a certain
job mix. At this point, a higher percentage of malleable jobs do not result
in significant improvement in performance.

f. Presence of malleable jobs in a workload decreases the average turn
around time and average wait time. However, the presence of malleable
applications increases the average execution time.

g. The performance in general improves as the flexibility increases up to
certain point.

h. The negotiation cost does not significantly impact the performance.

i. The number of negotiations for a given workload increases as number of
malleable jobs increases up to a certain point. As the number of
malleable jobs increases further the number of negotiations decreases and
it reaches a minimum with 100% malleable jobs.

j. The performance degrades as the application adaptation cost increases.
The impact of application adaptation cost is much more profound
compared to negotiation cost.

15

www.manaraa.com

1.9 Organization

This remainder of the dissertation is organized as follows. Chapter II presents a

review of the background literature related to the current work. Chapter III discusses a

conceptual and mathematical model for an adaptive parallel system. A discrete event

simulator and a prototype implementation of an RMS for an adaptive parallel system are

presented in chapter IV. Chapter V describes simulation experiments to validate the

simulator. In Chapter VI results and analysis of experiments to investigate the impact of

model parameters on performance are discussed. Finally, Chapter VII presents a

summary and describes future extensions and possible applications of this research.

16

www.manaraa.com

CHAPTER II

BACKGROUND AND RELATED WORK

The area of adaptive parallel system is a promising research area that has only

recently begun to attract attention. It is not a well researched topic in computer science

and therefore today, there is only a handful of literatures available in this area. The

related works in this area can be grouped in three main areas:

(a) Resource Management System (RMS) and language support for adaptive

parallel applications

(b) Scheduling of adaptive parallel applications

(c) Programming models for adaptive parallel applications

The following sections review selected research work that is deemed relevant to the

dissertation.

2.1 RMS And Language Support for Adaptive Parallel Applications

Much work has been conducted on Resource Management System (RMS), both in

academia [9][20][21][22] and industry [23][24][25][26][27][28], addressing many vital

aspects of efficient resource management. These systems represent the current state-of-

the-art for problems that can be solved using static and open-loop scheduling approaches.

They deal with both simple workloads (independent sequential and parallel jobs) and

dependant workloads (workflows) [28]. Some implementations support moldable jobs

17

www.manaraa.com

[28]. Other implementations address resource co-allocation through advance resource

reservation.

The need for RMS support for adaptive applications on distributed memory

systems has been recognized and addressed by many researchers. In the simplest form,

the adaptation can be achieved by checkpointing a running application and restarting it

with a different resource allocation. Vadhiyar and Dongarra [29] developed a framework

for malleable jobs called SRS (Stop and Restart System) based on check pointing and

migrations. Using this framework users can checkpoint and stop a parallel application

and then restart the application on a different number of processors to continue from the

checkpointed state.

To expand or shrink an application, users have to checkpoint and stop a job and

then restart the application on the different number of processor, which incurs large

overhead. Data redistribution is done by the SRS library and it supports very simple

parallel applications. SRS does not support applications with file I/O, structures and

pointers. Users need to modify their applications to use this framework. SRS does not

address the resource allocation or scheduling problem directly. It is more of a checkpoint-

restart system than a resource management system for malleable jobs.

One of the early research efforts in developing RMS was a malleable job system for

time shared parallel machine developed by Kale et. al. [14][15]. This work concentrates

on developing a framework for malleable applications for timeshared parallel machines.

The framework consists of three components, a scheduler, the Charm [30][31] runtime

system based on converse [32], and a set of malleable jobs developed using AMPI [33] or

18

www.manaraa.com

Charm++[31]. AMPI is an adaptive version of MPI implemented as user level threads.

Malleable programs based on AMPI consist of a large number of virtual processes

implemented as user level threads. Typically the number of virtual processes is larger

than the number of actual processors. Charm++ is an object-based language for parallel

programming. A Charm++ parallel program is mapped to a large number of parallel

objects that communicate with each other by message passing. The Charm runtime

system has a load balancer that balances the load between processors by redistributing

threads or objects. Parallel program developed on the Charm system has the ability to

accept a processor map (a bit vector) from external programs. A set bit in the processor

map indicates that the processor is allocated to the program. In Charm a new parallel job

is started on all processors in the system but load is only allocated to the processors

enabled in the processor map. The scheduler adapts (shrinks or expands) a malleable job

by sending a new processor allocation (bit vector) to the job; the run time system then

balances load by migrating processes from old allocation to new allocation. A skeleton

process is left behind on each vacated processor to forward messages meant for processes

that were previously running on that processor.

As there is no support for accepting a request from a running job, the charm

framework does not support evolving jobs. There is only one-way communication from

the scheduler to the running job. Therefore, there is no support for negotiation between a

running job and the scheduler. Applications developed in this framework are not truly

malleable applications because there are fixed number of processes throughout the life

time of an application with shrinkage and expansion achieved by folding or unfolding

19

www.manaraa.com

processes onto physical processor. In this system a malleable application has to be

developed in AMPI or charm++. A bit vector is too simplistic and cannot be used for

scheduling other resources (memory, disk space, bandwidth etc.).

The Distributed Resource Management System (DRMS) [13][34][35] is an

integrated environment for the development, execution and resource scheduling of

adaptive applications. DRMS supports adaptive applications based on SOP (Schedulable

and Observable Point) model. In the SOP model, the execution of a parallel program

consists of a sequence of stages. Each stage is like a conventional SPMD program, and

the number of tasks and the association between data spaces and tasks is fixed during a

stage. The boundary between stages is called SOP. The stage of a program can only be

examined at an SOP and the number of tasks and association between tasks and data

space can be altered. Each stage in a SOP program consists of four sections: resource,

data, control and computation. The resource section specifies the number of tasks in the

form of a range of valid number of tasks. Once a specific number of tasks are selected for

execution of a stage, the data section specifies an association between data space and

tasks. The control section specifies the values for control variables pertinent to the stage.

Finally, the computation section specifies the computations and communications that

each task performs during the stage.

The main components of the DRMS framework are: the DRMS compiler, job

scheduler and analyzer (JSA), resource coordinator (RC), and a run time system (RTS).

The DRMS compiler translates a program written in the DRMS language, linking them

with RTS to create a reconfigurable (malleable according to our definition) SOP

20

www.manaraa.com

program. DRMS language is an extension to FORTRAN that includes directives for

creating a SOP program. The resource allocation and scheduling decisions are made by

the JSA on the basis of implemented scheduling policies. The RC on behalf of JSA

communicates with running applications to convey reconfiguration decisions. An

application compiled under the DRMS has an associated task coordinator (TC) consisting

of multiple agents. One of the agents acts as master coordinator and communicates with

RC. The TC delivers reconfiguration messages to RTS. At the next SOP the RTS in

conjunction with TC, redistributes application data so that application can run with a new

set of tasks on a new set of processors.

The DRMS is a tightly coupled integrated environment. Applications have to be

developed in the DRMS environment and DRMS supports adaptive applications

developed in FORTAN based on SOP model only. There is no support for resource

negotiation in DRMS. Therefore, the JSA needs to know the valid resource configuration

of applications in advance to be able to reconfigure an application. The data redistribution

after reconfiguration is done by the system, not by the application as a result the DRMS

supports a limited class of parallel application.

Hungershofer et. al. [10][11] developed a resource management system called

Application Parallelism Manager(APM) for scheduling malleable jobs on shared memory

machines. APM determines processor assignment to running jobs based on estimated

current speedup to maximize system utilization. APM is implemented as a single server

consisting of a database and two threads which access the database. One thread listens for

information from the running application and stores it in the database. The other thread

21

www.manaraa.com

reads information from the database, computes processor assignments and sends the

assignments to running applications. Entries in the database are created when a running

application connects to the server for the first time and the entries are deleted when an

application disconnects after its completion. The APM and malleable applications

communicate with each other using TCP sockets. Applications send runtimes of parallel

and sequential phases to the APM. The information sent out by the application has to be

provided by the application itself. Applications send their information periodically and

also send information when major changes occur. For communication with the APM,

applications need to be compiled with a library provided by APM. Applications also need

to incorporate codes to monitor their sequential and parallel runtime. The information

sent by the APM to applications contains only one single value specifying the number of

assigned processors.

The APM implemented two scheduling policies. One is equipartitioning where

processors are distributed equally among running jobs. The other policy is based on

application speed up. The system was tested on a 16 processor SMP system with 4

instance of the same application (a multi-threaded finite element simulation). The results

indicate that both scheduling policies achieve a shorter schedule span than optimal offline

schedule with moldable jobs. The authors reported that scheduling many malleable

applications on a large system leads to complex behavior. It is not clear from their

publications how APM will perform with large number of applications on a large system.

APM works on shared memory machines only and it does not support evolving

applications

22

www.manaraa.com

The work by Jha et al. [36][37] addresses the adaptive resource allocation

problem for a pool of dependent applications (subtasks) cooperating in real time towards

a common goal. The applications are event driven and data dependent and their

computational needs and resource requirements vary due to runtime changes in event

rates and input data content. Jha et al. have adopted a four step operational model for

dynamic resource allocation to meet the deadline of the entire application.

Monitor application performance using real time instrumentation.

Detect deviation in performance from desired performance level.

Compute a new resource allocation that would likely improve performance
significantly.

Effect the new resource allocation in a manner that minimizes the perturbation to
the application due to the transition.

The system does not accept any new job arrival and minimizes the total execution

time of the complete task. The applications are instrumented to monitor their

performance and to report the current rate of data processing to the system. The system

analyzes the reports from all concurrently running applications and reallocates resources

in order to meet the deadline for the entire task. This solution is application domain-

specific as the system is responsible for converting the rate of data processing of the

subtasks into an estimate of the completion time, leaving no room for the resource

negotiations.

Little research has been reported in the literature about language and runtime

support for developing adaptive applications. Edjlai et al. developed a runtime library

called Adaptive Multiblock PARTI (AMP)[38][39] that enable users to create adaptive

applications. AMP can be used by compilers for data parallel applications such as HPF or
23

www.manaraa.com

it can be used by a programmer for developing adaptive parallel applications by hand.

According to the authors there are two major issues in executing applications in an

adaptive environment:

Redistributing data when the number of available processors changes during the
execution of the program.

Handling work distribution and communication, insertion and optimization when
the number of processors on which a given parallel loop will be executed is not
known at compile time.

AMP addresses both of these issues and supports parallel programs using the

single program multiple data (SPMD) model of execution. It is targeted towards an

environment in which a parallel program must adapt according to the system load. AMP

assumes that

The adaptive program does not remap immediately when the system load
changes.

When the program remaps from a larger number of processors to a smaller
number of processors, it may continue to use a small number of cycles on the
processors it no longer uses for computation.

An application based on AMP is marked with remap points, and adaptation can

occurs only at remap points. Remap points can be specified by the programmer if the

program is parallelized by hand, or may be inserted by the compiler if the program is

compiled by a parallel compiler such as HPF. An AMP program is spawned on the

maximum number of processors on which it can run. At remap points AMP determines if

there is a need for adaptation. If the system load requires adaptation, data redistribution is

used to move the active data to a different subset of processes called active processes.

Only the processes that belong to this subset perform computation. The processes from

24

www.manaraa.com

which all data has been removed are called skeleton processes. They still execute the

code for the application but, since they have no data associated, they do not perform

intensive computations. AMP imposes a hard limit on the maximum number of active

processes, namely the number of processes that were originally spawned. The skeleton

processes can interfere with other applications that have active processes on the same

physical processors.

2.2 Scheduling of Adaptive Applications

Scheduling algorithms that have been developed so far vary in their objectives

and approach to solving the problem at hand. Most of these algorithms have their roots in

queuing theory, graph theory, dynamic and linear programming, and most recently,

genetic and annealing algorithms. This section presents a review of related research

works on scheduling algorithms for adaptive application.

Most of the current work on scheduling adaptive applications has been theoretical.

Turek, Wolf, and Yu [40] used approximation algorithms and were the first to propose a

two-phase approach to schedule malleable jobs. Their goal was to find a non-preemptive

schedule that minimizes the make span (total of maximum execution time for all jobs).

The basic idea is to select an allotment (number of processors allocated to each task)

using a packing algorithm, and then solve the scheduling problem of these tasks using

non-malleable scheduling algorithms. This effort resulted in a polynomial time allotment

selection algorithm. The results were further improved by Dutot, Mounie and

Trystram[41]. Dutot et al. [6][7][8][9] proposed several approximation algorithms for

scheduling moldable and malleable applications. Two scheduling criteria were considered

25

www.manaraa.com

for evaluating the algorithms: minimization of the makespan and minimization of the

average completion time. For the problem of scheduling malleable applications, their

approach was based on batch scheduling; applications may arrive at anytime, but are

scheduled in successive batches. Mounie, Rapine, and Trystram [10] adopt a two-phase

approach similar to the method of Turek et al. [40] and focuse on the first phase, the

allotment selection, to reduce its complexity. The allotment selection was done by either

using the canonical list scheduling algorithm or a knapsack algorithm, resulting in a

linear time complexity. They defined a moldable job using Feiteson’s [1] definition as

malleable job. Their research does not consider true malleable jobs (i.e. job that can

change number of processors during execution) in their scheduling algorithms.

Most current RMS use simple scheduling schemes such as First-Come-First-

Served and priority with some variation of backfilling or gang scheduling. Only a few of

these RMS are aware of adaptive applications, and they use a heuristic approach for

scheduling adaptive applications.

The dynamic resource management system DRMS [16] uses a

reconfigurable scheduling (RS) policy. Each malleable application has to provide a set of

acceptable numbers of processors it is capable of executing on. Under the RS policy,

whenever processors are available to schedule jobs, the scheduler tries to schedule jobs in

the order in which they arrived. However, instead of scheduling the earliest job on the

maximum possible number of processors, it tries to schedule as many of the currently

waiting jobs in the pending queue as possible. When not enough free processors are

available and there are jobs waiting to run, it tries to free up processors from jobs that are

26

www.manaraa.com

currently running on more than their minimum number of processors. Similarly, when

there are no jobs waiting to be run and free processors are available RS tries to expand

one or more of the running jobs to run on a larger set of processors. The authors

compared the performance of reconfigurable scheduling with maximum-to-fit non-

adaptive scheduling. A non-adaptive scheduling workload consists of moldable jobs only.

Simulation experiments showed that, compared to non-adaptive policy, a reconfigurable

policy always performs better.

Kale et. Al. [14][15] adopted a similar approach to schedule malleable jobs. Each

arriving jobs specifies the minimum and maximum number of processors it can use.

When a new job arrives, the scheduler recalculates the number of processors allocated to

each running jobs. All jobs, including the new ones, are allocated their minimum number

of processors. Leftover processors are shared equally, subject to each job’s maximum

processor usage. If a new job cannot be scheduled, it remains in the pending queue. When

a running job finishes, the scheduler applies the same algorithm to allocate the free

processors. Experiments with actual applications and simulation showed that both system

utilization and mean response time improves with adaptive scheduling.

Hungershofer et al. [10][11]] implemented adaptive scheduling algorithms based

on two different policies: equipartitioning and accumulated speed up. In both policies

malleable jobs are started with a minimum number of processors. In the equipartitioning

policy, free processors are distributed evenly among running malleable jobs. The other

policy is based on application speed up. APM estimates the speed up of all running

applications on an additional processor. The application with the highest differential

27

www.manaraa.com

speed up (difference between current speed up and speedup on one additional processor)

is allocated an additional processor. Experimental results show that the equipartitioning

policy leads to better response times, while the accumulated speed up policy increases the

throughput of the system.

2.3 Programming Model for Adaptive Applications

The major issues in developing adaptive applications are programming

abstraction and efficient support for runtime adaptation. Programming abstractions

should be easy to use so that application developers are motivated to develop adaptive

applications. The programming abstraction should be easy such that they can be added to

non-adaptive applications without much effort to convert them into adaptive applications.

The mechanisms for supporting adaptive applications that has been reported in the

literature for various programming models are described below. The programming

models can be grouped into five categories: master-worker model, fork-join model, fixed

task model and SOP model.

Master-worker model: Applications in this model consist of a master and several

workers and computation for worker tasks is dynamically carved out. The master is a

global entity that defines the tasks that must be executed and the data on which they

operate. The master can be active (a process) or passive (a global state pool). The

workers are given or fetch tasks from the master, execute them and return the result to the

master. The Piranha[42] system is an example of a mechanism to support adaptive

applications developed based on the Linda workers model [43][44]. The Linda model is a

general model for parallel programming based on distributed data structures. In Linda the

28

www.manaraa.com

total work to be done by the program is broken into a number of discrete tasks, which are

stored in a global data space. One process known as the master is responsible for

generating the tasks and gathering and processing the results. Actual program execution

involves a number of component processes known as workers. Each worker removes a

task, completes it, and then grabs another until some condition is met. Workers may

encounter a special type of task known as a poison pill telling it to terminate [44]. Linda

supports dynamic creation of processes. Piranha was mainly developed to utilize idle

cycles in a network of workstations. It moves Linda processes from heavily loaded

workstations to idle workstations.

Fork-Join Model: In this model a number of kernel level threads are scheduled for

execution on physical processors; these kernel threads are then used as virtual processors

for the execution of user level threads. The user level threads are created to execute tasks

from a shared task queue. Examples of systems that use the fork-join model to support

adaptation are Cray Multitasking [45], Process Control [46], Minos [47] and

Autoscheduling [48][49]. The work on fork-join models mentioned above is all in the

context of shared memory multiprocessors machines.

Fixed Task Model: This model supports adaptation of SPMD programs with in a

fixed number of executing tasks. An application in the fixed task model is started with the

maximum number of tasks (either thread or process) on which it can run. Examples of the

fixed task model are programs based on AMPI [14][15] and AMP [38][39]. This model

supports malleable applications only. Programs based on AMPI work in shared memory

machines and consist of a large number of virtual processes implemented as user threads.

29

www.manaraa.com

Typically the number of virtual processes is larger than the number of actual processors.

Adaptation (shrinkage and expansion) is achieved by folding or unfolding threads onto

allocated physical processors. In the case of AMP, adaptation is achieved by

redistributing the active data to a subset of processes leaving some skeleton processes.

SOP Model: In the SOP programming model, the execution of a parallel program

consists of a sequence of stages called schedulable and observable quanta (SOQ). The

number of tasks is fixed during an entire stage, and the association between data spaces

and tasks is fixed one-to-one. Therefore, each stage behaves like a conventional SPMD

program. Boundaries between stages are defined as schedulable observable points (SOP).

Reconfiguration of a parallel program can only occur at a SOP. During reconfiguration

the associations between tasks and data spaces are altered. The stage following a

reconfiguration point executes on a new configuration of tasks and data until it reaches a

new SOP. A reconfiguration from one stage to the next may involve a change in the

number of tasks, a change in the association of data with tasks, or both.

Each stage of a SOP program consists of four sections: resource, data, control and

computation. The resource section specifies the number of tasks needed for the execution

of the stage. This specification is usually in the form of a range of valid number of tasks.

Once a specific number of tasks is selected for execution of the stage, the data section

specifies an association between the data space and tasks. The control section specifies

values for control variables pertinent to the stage. Control variables are used to control

the flow of the execution inside a stage, which may vary depending on the number of

tasks and data association. Finally, the computation section specifies the computations

30

www.manaraa.com

and communications that each tasks performs for the execution of the stage. The

computations and communications are usually steered by the control variables specified

in the control section.

2.4 Limitation of Existing Research

RMS support for adaptive applications has been restricted to malleable

applications only. Most existing systems assume that the malleable applications can

operate on any number of processors between a minimum and maximum. This is a strict

restriction on malleable applications. In practice, from logs of supercomputing centers it

has been observed that many parallel applications require that the number of processors

be a power of two. Current resource management systems for adaptive applications do

not support evolving applications. None of the RMS mentioned in this chapter explicitly

target the communication and negotiations between the applications and the RMS or

dynamic resource reallocation, both imperative to support adaptive applications. Another

limitation of the existing systems is that the RMS and applications are tightly coupled.

There is no clear separation or interface between them. Data redistribution is performed

by the RMS. Consequently, applications have to be developed in the framework provided

by the RMS.

The scheduling approaches discussed in this chapter use heuristic techniques. So

far, these scheduling algorithms focused on malleable applications only. Most of the

algorithms adopted an equipartitioning policy for processor preemption or free processor

allocations. No effort has been made to compare different preemption or allocation

policies (for example, preempt resources from longest running job vs. shortest running

31

www.manaraa.com

job). None of the scheduling algorithms have considered evolving applications in the

workload. The scheduling algorithms assume that the malleable applications will be able

to use any number of processors between the maximum and minimum number of

processors. They have not considered negotiations as part of scheduling, which would

change the scheduling strategy.

Though the existing programming models can be adopted for developing adaptive

applications, none of these models address all aspects of adaptive applications. For

example none of the existing models support the notion of negotiation. Some of the

existing programming models do not support dynamic task creation and task destroying.

The main goal of existing research in adaptive parallel systems so far has been

limited to accommodate a restricted model of malleable application to determine the

impact of the presence of a malleable workload on system performance. None of the

research addresses negotiation between the RMS and applications, and none of them

address evolving applications. No research has been targeted towards determining the

requirements imposed on the RMS by the presence of adaptive applications in a

workload. No attempt has been made so far to study and understand the overall model of

an adaptive parallel system.

32

www.manaraa.com

CHAPTER III

THE ADAPTIVE PARALLEL SYSEM

The goal of this dissertation is to model and simulate an adaptive parallel system

with malleable applications in a distributed computing environment. This goal is

achieved through the following steps: 1) develop a conceptual model of the system, 2)

design a mathematical model from the conceptual model, 3) develop a simulator, 4)

validate the model using the simulator, and 5) gain new knowledge about the adaptive

parallel system through simulation experiments. Figure 3.1 shows a dependency graph of

the research methodology, and the main steps are briefly described below.

1. Conceptual Model: In this stage, an adaptive parallel system has been studied

carefully to develop an understanding of the system. The important components

of the system and interactions between them have been identified.

2. Mathematical Model: From the conceptual model a mathematical model has been

developed. The components and their interactions are described using variables

and equations. An adaptive parallel system is highly complex, so that developing

an accurate and valid mathematical model is extremely difficult, if not

impossible. Therefore, we have developed a semi-formal mathematical model and

studied the model by means of numerical simulation.

33

www.manaraa.com

3. Simulator: A discrete event simulator has been developed from scratch to

simulate the model developed in the previous step.

4. Validate the Simulator: In this stage, the simulation experiments have been

conducted using real world data. The goal of the simulations was to validate how

accurately the model approximates the real system.

5. Gain New Knowledge: Simulation experiments with synthetic data have been

conducted in this step. The goal of these experiments was to gain insight about

adaptive applications, the RMS, and their interrelationship.

Modeling Process

Conceptual Model

Mathematical Model

Develop
Simulator

Simulator
Validate Model’s capability of
approximating the real world

Analyze the behavior of the system
and gain knowledge about
properties of adaptive parallel
systems

Figure 3.1 Research methodology

34

www.manaraa.com

3.1 Description of an Adaptive Parallel System

The goal of a Resource Management System (RMS) is to provide support for an

efficient utilization of computational resources and to resolve conflicts of interests

between various end users. Typically, this goal is achieved by organizing the workload,

composed of sequential and/or parallel applications, into queues and by creating a

schedule. The schedule determines the order in which the applications are executed on

computing nodes. The schedule is generated according to some system policies. The

RMS functionality also includes the actual resource allocation (starting the applications)

or de-allocation (terminating the applications), and reporting the applications’ status

(pending, running or completed) to the system administrator and to the end users. If the

workload contains malleable and evolving applications in addition to rigid and moldable

applications, a traditional RMS will require additional functionalities to manage adaptive

applications. In an adaptive RMS, if enough resources are not available while computing

a schedule, the RMS has the option of preempting resources from running malleable

applications. When running evolving applications that require additional resources ask

the RMS for resources, the RMS has to consider these requests while computing a

schedule. Alternatively, if idle resources are available and there are no pending

applications or pending resource requests from running evolving applications, the idle

resources may be allocated to running malleable applications. In order to manage

adaptive applications, interactions between applications and the RMS are required. To

determine the functionalities that an adaptive RMS must have, we need to analyze the

35

www.manaraa.com

requirements of an adaptive RMS. One way to analyze its behavior and requirements is to

develop use cases for an adaptive parallel system.

3.1.1 Use Cases for an Adaptive Parallel System

From a high level perspective an adaptive parallel system can be viewed as being

composed of three actors: users, RMS, and running applications that include malleable,

evolving, and non-adaptive applications. One can think of four high-level use cases in an

adaptive parallel system.

Submission of a new application

Completion of a running application

Idle resources released by a running evolving application

Additional resources requested by a running evolving application

The high-level use cases are described below.

3.1.1.1 Use Case: Submission of a New Application

Actors: users, RMS, running malleable applications

Overview: This use case starts when a user submits an application to the RMS for

execution. The RMS starts the application if resources requested by the application are

available. If resources are not available, depending on the policy, the RMS either tries to

preempt resources from already running malleable applications and starts the application

or puts the application in a pending queue. Running malleable applications may agree to

release less or more resources than the amount requested by the RMS. For example, an

application submitted by a user may require eight processors, and there are three idle

36

www.manaraa.com

processors available, while a malleable application is running on eight processors. The

requirement of the malleable application is that the number of processors be a power of

two, and the minimum and maximum number of processor requirements are two and

sixteen, respectively. The RMS may ask the malleable application to release five

processors. Since the malleable application can operate on only a power of two number

of processors, it may agree to release only four or six processors. In reply, the RMS may

order the application to release six processors, and starts the new application on eight

processors (three idle, and five from the six released processors). This use case ends

when the submitted application starts execution or it is queued in the pending job queue.

The use case is depicted in Figure 3.2.

User

Submit a new app.

Preempt resources

RMS

Start application

Pending Q

Queue
application

Running
Applications

Figure 3.2 Diagram of interactions for the use case “submission of a new application”

37

www.manaraa.com

3.1.1.2 Use Case: Completion of a Running Application

Actors: RMS, running application

Overview: This use case starts when a running application (non-adaptive or

adaptive) completes its execution. The RMS updates the system state, and depending on

the policy, it starts one or more pending applications from the queue (if there are any)

and/or distributes the idle resources among running malleable applications. This use case

ends when the RMS completes allocating the idle resources released by the completed

application according to the system policy. Figure 3.3 shows this use case.

RMS

Running
Applications

Start
pending

application

Complete
execution

Allocate resources to
malleable apps.

Figure 3.3 Diagram of interactions for the use case “completion of a running
application”

3.1.1.3 Use Case: Resource Released By a Running Evolving Application

Actors: RMS, running evolving applications

Overview: This use case starts when a running evolving application releases some

unutilized resources and informs the RMS. The RMS updates the system state and

38

www.manaraa.com

depending on the policy, starts one or more pending applications from the queue (if there

are any) and/or distributes idle resources among running malleable applications. This use

case ends when the RMS completes allocating the idle resources released by the running

evolving application according to the system policy. This use case is presented in Figure

3.4.

Allocate resources to
malleable apps.

RMS

Running
Applications

Start
pending

application

Release
resource

Figure 3.4 Diagram of interactions for the use case “resource released by a running
evolving application”

3.1.1.4 Use case: Evolving Application Requesting Additional Resources

Actors: RMS, running evolving application, running malleable applications.

Overview: This use case starts when a running evolving application asks the RMS

for additional resources. If resources are available, the RMS allocates the requested

resources. If enough resources are not available, the RMS tries to preempt resources from

one or more running malleable applications and allocates the requested resources to the

running evolving application. If some, but not all resources are available (even after

39

www.manaraa.com

preemption), the RMS may offer the available resources to the requesting application,

instead of rejecting its request. The evolving application may or may not accept the

offered resources. For example, consider an evolving application which requires that the

number of processors be a power of two and is executing on eight processors. In mid

execution, the application needs additional resources and asks the RMS for twenty four

additional processors. The RMS may have only five idle processors available, and it can

preempt ten more processors from three running malleable applications (one from the

first, two from the second and seven from the third). Instead of rejecting the request, it

may offer the evolving application fifteen processors. Since the application can use only

eight additional processors out of fifteen offered, it may ask the RMS to allocate eight

additional processors. The RMS may then ask malleable applications one and two to

release one and two processors respectively, and allocate 8 processors (3 preempted and 5

idle) to the evolving application. The use case ends when the RMS completes resource

negotiation with the requesting applications and allocates resources agreed during the

negotiations, or rejects the request. This use case is presented in Figure 3.5.

40

www.manaraa.com

evolving apps.

RMS

Preempt
Resources

Request for Allocate resources to
resources

Running
Applications

Figure 3.5 Diagram of interactions for the use case “evolving application requesting
additional resources”

3.1.2 Requirements of an Adaptive Parallel System

From the use cases described above, it is evident that a complex multi-round,

negotiation mechanism between applications and the RMS is required to support a wide

variety of parallel adaptive applications. In an adaptive parallel system, multiple evolving

applications may request additional resources at the same time, or one request is followed

by another in a very short period of time. If enough resources are not available to fulfill

the resource requirement of a new application submitted by a user or a request for

additional resources by an evolving application, the RMS may have to communicate with

one or more malleable applications to preempt resources. The RMS must manage these

communications and negotiations efficiently. Clearly, managing negotiations with

running adaptive applications is one of the critical requirements of an adaptive RMS. For

41

www.manaraa.com

the negotiation management, an adaptive RMS is required to perform the following

additional functionalities compared to their counterpart in the traditional RMS:

Receive requests from running evolving applications.

Handle multiple simultaneous requests form running evolving applications.

Carry out negotiations with running adaptive applications.

Allocate additional resources to running adaptive applications.

Claim resources from running adaptive applications.

3.2 Conceptual Model of an Adaptive Parallel System

From the use cases described in the previous section, a conceptual model of an

adaptive parallel system has been developed. The conceptual model has been developed

using a bottom up approach. First a conceptual model of an adaptive application was

developed and then gradually the model for other components of the system was

developed, and finally a conceptual model of the system was developed. An adaptive

parallel system has three main components: applications, RMS and users.

3.2.1 Adaptive Applications

Adaptive applications are capable of expanding by dynamically creating new

processes and redistributing data among its processes while executing. They are also

capable of shrinking by self reconfiguration, and dynamically destroying processes. In

practice, it is possible to create such a parallel application using PVM and MPI, both of

which support dynamic process creation and destruction. For expansion or shrinkage, an

adaptive application requires negotiation with the RMS to acquire additional resources

for expansion or to inform the RMS about the resources it will release.
42

www.manaraa.com

For expansion or shrinkage, an adaptive application must negotiate resources with

RMS. Consequently, adaptive applications must be able to send negotiation requests to

the RMS and be able to accept negotiation requests from the RMS. They must also have

the intelligence to carry out and conclude a negotiation. The conclusion of negotiation

results in an agreement, which the application must execute by consuming or releasing,

agreed upon resources. Two parties (the RMS and the application) are involved in a

negotiation. In the case of malleable applications, the RMS initiates the negotiation by

sending an offer to the application. In the case of evolving applications, the negotiation is

initiated by the applications. The negotiation continues by exchanging the offer and

counter offer between the applications and RMS. For successful negotiations, both the

application and the RMS must communicate with each other according to some agreed

upon negotiation protocol.

Once an agreement is reached between an application and the RMS, the

application should be able to execute the agreement. The execution of an agreement may

involve receiving of a list of allocated resources from the RMS, and reconfiguring itself

to make use of the additional resources. Alternatively, the execution of the agreement

may involve the application reconfiguring itself, freeing up agreed upon resources, and

releasing the free resources to the RMS.

Our model of an adaptive application is based on a master-worker hierarchy employed

in many data parallel scientific and engineering application. It consists of a coordinating

process which is the master and a set of computing processes which are the workers. The

computing processes perform the application specific computation. The coordinating

43

www.manaraa.com

process distributes the initial workloads among workers, monitors worker loads, and

balances loads among workers. In an adaptive application, the coordinating process is

also in charge of the resource negotiation with the RMS and execution of the agreement.

The coordinating process executes the agreement by reconfiguring the running

application to execute on a changed number of resources. Consequently, execution of an

adaptive application consists of a number of phases. During each phase the amount of

resources the application uses remains unchanged. As a result of the negotiation, the

application may reconfigure itself and enter a new phase where it will be running on a

different number of resources.

In general, a parallel application may not be able to reconfigure itself at any

arbitrary point in time. It may have to wait for a synchronization point where it can

reconfigure itself by creating/destroying processes, and/or redistributing data.

Consequently there may be a time gap between reaching an agreement, and execution of

the agreement by the application. This has a critical implication for the RMS in the case

of agreements involving resource release, because the RMS requires allocating the

released resources to other running or pending applications. The application should be

able to determine when it can release agreed upon resources, and inform the RMS during

negotiation, so that the RMS can make informed decisions regarding allocating the

released resources.

3.2.2 Resource Management System

In an adaptive parallel system the goal of the Resource Management System

(RMS) is to provide support for efficient utilization of computational resources and for

44

www.manaraa.com

resolving conflicts between interests of various end users. Typically, this goal is achieved

by organizing the workload into queues, and by creating a schedule. In order to create a

schedule, the RMS may need to negotiate with running adaptive applications to allocate

them additional resources or preempt resources from running applications and allocate

the released resources to waiting applications. The schedule determines the order in

which the applications are executed on computing nodes. In an adaptive RMS if enough

resources are not available while computing a schedule, the RMS has the option of

preempting resources from running malleable applications. When running evolving

applications require additional resources, they ask the RMS for resources and the RMS

has to consider these requests while computing a schedule. Alternatively, if idle resources

are available and there are no pending applications or pending resource requests from

running evolving applications, the idle resources may be allocated to running malleable

applications. The RMS functionality includes actual resource allocation (starting the

applications), de-allocation (terminating the applications), reallocation (allocating and

preempting resources to/from running application), and reporting the applications’ status

(pending, running or completed) to the system administrator and to the end users. An

adaptive RMS has the several components to achieve the above mentioned

functionalities. Figure 3.6 shows the component of an adaptive RMS.

45

www.manaraa.com

Server

Dispatcher

Scheduler

Negotiator

System
State

Node
Controllers

Running
Applications

Application
submission Update

Read

Agreement Negotiation
Info

Initiate
scheduling

Schedule

Schedule

Application
Completion
Info

Resource
Request Start

New
Application
Info

Execution
of
Agreement

Resource
Negotiation

Users

RMS

Figure 3.6 Component of an adaptive RMS

3.2.2.1 Server

The server acts as the central coordinator of the RMS. The server is capable of

accepting events from other components of the RMS and also events from external

46

www.manaraa.com

entities such as users, or running applications. In response to an event (internal or

external) the server performs some functionality. For performing its functionality the

server maintains a system status. The system status consists of a list of pending

applications, a list of running applications, resource information, and a list of resource

request from running applications.

Users submit applications for execution to the server. The server updates the

system state by storing the application’s information in the pending list. It receives

application completion information from the node controllers, and updates the system

status by updating the resource information and the running application list. When a

running evolving application requires additional resources, it sends a request to the

server. Also when an evolving application has idle resources, it releases idle resources

and informs the server. In these events the server updates the system status.

One of the main functionalities of the server is to initiate the scheduling cycle and

the server decides when to initiate the scheduler. The server initiates scheduling in

response to a scheduling event (application submission, application completion, request

for additional resources by running evolving applications, and voluntary resource release

by evolving applications). When the scheduler is computing a schedule, if the server

receives another scheduling event, the server may queue the event and initiate scheduling

later. When the server receives a schedule, it sends the schedule to the dispatcher for

execution

47

www.manaraa.com

3.2.2.2 Node Controller

A node controller manages a computing node and manages applications running

on that node. The node controllers act as server agents and start new applications on

behalf of the server. The node controller receives application information and resource

assignment from the dispatcher, and then launches the application on the assigned

resources. When an application completes its execution and terminates, the corresponding

node controller sends an application completion notification to the server.

3.2.2.3 Scheduler

The scheduler computes a schedule according to the system policy, the objective

function, and the current system state. In an adaptive parallel system the scheduler has to

consider the request for additional resources from running evolving applications in

addition to the demands of pending applications. If enough resources are not available to

meet the demands of pending and running evolving applications, the scheduler has the

option of preempting resources (claiming resources without terminating the application)

from running malleable applications. Alternatively, if idle resources are available, the

scheduler can allocate them to running malleable applications. Consequently, computing

a schedule involves deciding which pending applications to execute, selecting evolving

and malleable applications to allocate additional resources, selecting preemption

candidates among malleable applications, and assigning resources to the selected

applications. If a schedule involves allocation or preemption of resources from running

adaptive applications, negotiations with those applications are necessary.

48

www.manaraa.com

The computing of a schedule in an adaptive parallel system may be a multistage

process. The scheduler computes an initial schedule according to the system policy and

objective function. It negotiates with running applications through the negotiator.

Depending on the negotiation outcome, the scheduler may need to re-compute the

schedule, which may require further negotiations. This re-computation of schedule and

negotiations may go on multiple times until a final schedule is computed. The final

schedule contains a list of pending applications to be started and a list of agreements with

running malleable and evolving applications.

Some component of the RMS must decide when to compute a schedule and direct

the scheduler to compute a schedule, and send information necessary to compute the

schedule. In our proposed model, the server decides when to compute a schedule and

invokes the scheduler.

3.2.2.4 Negotiator

It is the RMS agent that carries out the negotiation with adaptive applications. The

negotiator must know the initial offers that it needs to make to the applications. In

addition, it must also know the negotiation policy. The negotiation policy dictates how

the negotiation will proceed and converge, when to accept or reject a counter offer by an

application, when to terminate a negotiation, and what to do if an application doesn’t

respond to an offer or counter offer. The negotiator may have to negotiate with multiple

applications; it may carry out these negotiations with multiple applications

simultaneously, or sequentially one after another. At the end of negotiations, the

negotiator sends the outcome of negotiation (list of agreements) back to the scheduler.

49

www.manaraa.com

3.2.2.5 Dispatcher

Once a schedule has been computed, the server sends the schedule to the

dispatcher for execution. The schedule consists of three lists: i) a list of pending

applications to be started, each with a list allocated resources; ii) a list of running

applications, each with amount of resources to be released; iii) a list of running

applications, each with a list of additional resources to be allocated to them. The

dispatcher contacts the running applications which are required to release resources and

get the list of released resources from applications. The dispatcher communicates with

running applications which are required to expand and sends them the list of additional

resources allocated to them. It sends information of pending applications to be started to

the assigned node controllers, which in turn start application on allocated resources.

3.2.3 Users

Users submit their application for execution on the cluster. The user provides all

the information required by the RMS to execute their application. The information

includes the executable name, resources required for the application, and how long the

resources are required. Users may also provide additional application constraints such as

a deadline by which the application must complete execution, the minimum wall clock

time after which the application must start, or the minimum and maximum number of

processors that the application can utilize etc. From the RMS points of view, the

applications submitted by the users are independent of each other. A set of applications

submitted by different users over a certain period of time is called workload.

50

www.manaraa.com

3.2.4 Relationship between the Components

The conceptual model depicting the components of an adaptive parallel system

and their association is shown in Figure 3.7. The association between the components in

the conceptual model can be one to one (i.e. at a particular point in time one instance of a

component interacts with exactly one instance of another component), one to many (one

instance of a component interacts with one or more instances of another component), or

many to one (one or more instances of a component interacts with exactly one instance of

another component).

Multiple users may submit applications for execution to the servers at a discrete

point in time. As a result, the association between users and server is many to one. There

are multiple node controllers in the system, each managing a single node, and the

association between the server and the node controller is one to many. One or more

running evolving applications may send requests for additional resources to the server at

a particular moment in time. The association between running applications and the server

is many to one.

Figure 3.8 shows the collaboration diagram of the conceptual model for an

adaptive parallel system. Each object in the model performs some functions and interacts

with other objects by exchanging messages. Objects have one or more inputs from other

objects and have one or more outputs to other objects. To perform its functions, an object

may be required to maintain some internal information apart from the inputs from other

objects. Objects perform well-defined functions in response to inputs from other objects.

51

www.manaraa.com

Users System
Status

1

Submit Job

1

1

1

Update

Initiate

Send Schedule

Send
Schedule

Job
Completion

Execute
Agreement

Resource Request

Server
Scheduler

1
1

1

1

* 1

Node Controllers

*

1

Running Applications

1..*

Dispatcher

1..*

1
Send Job Info

Initiate

1 1

Send Neg.
Status

Negotiate

Negotiator

1..*

1

1 Completion 1

1 Start 1

* means zero or more instances 1..* means 1 or more instances

 Figure 3.7 Conceptual model of an adaptive parallel system

The model can be considered as an event driven model. An input is an event, and

an object performs a certain function in response to an event and may generate one or

more events for other objects. Some events such as submission of a job, completion of

job, request for negotiation, and release of resource by an evolving job, can occur at any

52

www.manaraa.com

point in time. Some events occur in response to other events or execution of some

functionality. The server, the scheduler, the negotiator, the dispatcher, and the node

controllers represent the RMS. The objects user and running jobs are external to the

RMS.

Table 3.1 shows the object relationship and information flow among objects. The

first row of the table lists the functionalities that an object performs. The second row

shows the information required to perform the functionalities. Each entry in the cells

after the second row shows the information exchange between the objects in the column

heading and the row heading of the cell. The cell entry is the output of the row object to

the column object. An empty cell indicates the information exchange between the objects

of the column and those of the row.

After the second row, the contents of a row show the output of an object in the

row heading, and contents of the columns show the inputs to the object in the column

heading.

53

www.manaraa.com

12

Node
Controllers

Running Jobs

Server SchedulerUser Negotiato
r

1 2

8

3

7

11 14

10

13

4

5

6

One or Multiple
Invocation

9

Dispatche
r

Interactions between objects
1. Submit Job (Job info)
2. Schedule (System State)
3. Negotiate (proposal)
4. Offer/Counter offer
5. Counter offer
6. Accept/Reject Notification
7. Negotiation outcome

(Agreements)
8. Execute (schedule)

9. Execute schedule
10. Execute (Agreement)
11. Start New Job (Job execution

info)
12. Launch Job
13. Request for negotiation
14. Complete job (Job completion

info)

Figure 3.8 Collaboration diagram of the conceptual model for an adaptive parallel
system

 54

www.manaraa.com

Table 3.1 Object relationship and information flow

User Server Scheduler Negotiator Node
Controller

Running
Malleable

Running
Evolving

Functio
nal-ity

Submit
job

Initiate Scheduling

Update System status

Execute Schedule

Compute
Schedule

Negotiate with
malleable and
evolving jobs

Start new job Negotiate

Execute
agreement.

Negotiate

Execute
agreement.

Request for
resource

Release
idle
resource

Info.
Require
d

 System State

New job info

Job completion info

Resource request

Resource release

Schedule

System state

Agreement.
List

Policy

Objective
function

Neg. Info

Neg. Policy

Offer

Job info

Allocation
info.

Offer

Agreement.

Offer

Agreement.

User New Job info.

Server System State Job
execution
Info

Agreement. Agreement.

Schedul
er

Schedule Neg. Info

Negotia
tor

Agreement
List

Offer Offer

Node
Control
ler

Job Completion Info

Runnin
g
Malleab
le

Released resource Offer

Runnin
g
Evolvin
g

 Neg. Request
Released resource

Offer

3.3 Mathematical Model

The mathematical model describes the conceptual model in terms of variables and

equations. The goal of the mathematical model is to provide qualitative and quantitative

information on system and application performance for a given adaptive parallel system
55

www.manaraa.com

(a given workload and a RMS). While developing the mathematical model, we need to

represent the objects, procedures, and the information flow described in the conceptual

model presented in section 3.5 in terms of variables and equations. As described in the

previous sections, an adaptive parallel system is a very complex system. In this

dissertation we have attempted to model and simulate an adaptive system with rigid and

malleable applications only. Once a model for an adaptive system with malleable

applications is developed and validated, it can be enhanced to incorporate evolving

applications in the future. Before developing the mathematical model, we will define the

assumptions that have been made about the system in section 3.3.1.

3.3.1 Assumptions

For developing the mathematical model, and subsequently to develop the

simulator, we made the following assumptions about an adaptive parallel system.

1. All applications in the workload are parallel applications.

2. Workload consists of rigid and malleable applications only.

3. Sequential computation is negligible compared to parallel computations.

4. The computation is linearly distributed over time.

5. Only processors are considered as resources.

6. The negotiator performs negotiations sequentially one after another.

7. Malleable applications perform negotiation in a non blocking manner.

That is while the coordinating process is engaged in negotiation, the

computing processes can continue with computation

8. Adaptation cost varies from application to application.

56

www.manaraa.com

9. Adaptation cost is proportional to the change in the number of processors.

10. Adaptation cost does not vary from shrinkage to expansion.

3.3.2 Workload

There are two trends in generating the workloads among the researchers working

in the resource management and scheduling communities. One trend is to use actual

workload data derived from job traces from supercomputer centers [50][57]. The other

trend is to generate workloads from workload models [51][52]. As discussed in Chapter

II, using a workload model has advantages over an actual workload derived from job

traces.

For the simulation experiments presented in chapter VI, we have used the

workload data generated from a workload model. There are several validated workload

models available for rigid applications [52][58][59][60][61]. Currently none of the

models available are able to generate a workload containing rigid as well as malleable

applications. These models provide arrival time, execution time, and number of

processors required for a rigid workload. Instead of developing a model from scratch we

have decided to adopt one of the validated models for rigid application and extend it to

accommodate malleable applications.

For simulation experiments in this research we need realistic workload data. The

reasons for the need of realistic workload data are as follows. i) To validate the simulator

and consequently the model. If the model is validated against realistic data we have more

confidence about the models capability of approximating a real adaptive parallel system.

ii) If realistic data is used to investigate the impact of model parameter of system

57

www.manaraa.com

performance, then we will have more confidence on the experimental results and

subsequent knowledge gained from the experiments.

In this research we have selected the workload model by Allen B. Downey [52]

for modification to generate a malleable workload. There are three primary reasons for

selecting Downy’s model. First, Downey’s model has been validated against workload

logs from San Diego Super computer center (SDSC) and Cornell Theory Centers (CTC),

and it can generate realistic data. Second, the model has been used by several researchers

to generate workloads for their experiments. Third, an open source implementation of

Downey’s model is available which makes it easier to extend and modify.

Downy’s model takes the maximum number of processors that an application can

have, the minimum and maximum runtime of applications in the workload, and the

number of jobs to be generated as input. The model provides the arrival time, the number

of processors required, and the run time for each application in the workload. A model

for malleable application must able to generate a workload with rigid as well as malleable

applications. To accommodate malleable applications the existing Downy’s model

required three modifications: decide how many of the applications should be malleable,

what should be the distribution of malleable applications in the workload, and what will

be the flexibility range (minimum and maximum processors) of each malleable

application. The modified model has four additional parameters to convert the rigid

applications generated by Downey’s model into malleable applications. The parameters

are the number of malleable applications as percentage of total number of applications in

58

www.manaraa.com

the workload, the distribution of malleable applications in the workload, and the

minimum and maximum number of processors that a malleable application can have.

3.3.3 Application

The execution of a malleable application consists of phases. Within a phase, the

number of processors used by the application remains unchanged. The coordinating

process of the application carries out negotiation with the RMS and enters into an

agreement which involves either releasing some processors or receiving some additional

processors. The application executes the agreement by reconfiguring itself. The

reconfiguration involves redistribution of data, and the consumption or the release of

processors. As a result of reconfiguration, the application enters into a new phase of

execution. There is an additional cost of reconfiguration at each phase change which is

called adaptation cost. The adaptation costs bring overhead to running malleable

applications.

Let the total computation of a malleable application be W and it takes td time to complete

the computation on pd processors. Then:

W = pd × td …………………………………………..(3.5)

Let the application consist of n phases and uses p1, p2, … pn processors in
phases 1, 2, … n respectively.

Let the execution times of phases 1, 2, .. n be t1, t2, … tn, respectively

Let the adaptation costs for the phases be ca1, ca2, … can, respectively.

Then, the remaining computation after phase 1 is:

59

www.manaraa.com

Wr1 = W −W1 …………………………………………(3.6)

Where W1 is the computation completed in phase 1

Wr = p × t − p × t …………………………(3.7)1 d d 1 1

If there is no phase change after phase 1, then the time required to complete the

remaining computation Wr1 after phase 1 is:

Wr tr1 = 1 ...(3.8)
p2

(pd × td − t1 × p1)or tr = 1 p2

If the application consists of three phases only then the remaining computation after

phase 2 is

Wr = p × t − p × t − p × t2 d d 1 1 2 2

or Wr2 = Wr1 − p2 × t2 ……………………….(3.9)

And the time required to complete the remaining computation Wr1 after phase 2 is

Wr2tr2 = ……………………………………(3.10)
p3

(pd × td − t1 × p1 − t2 × p2)or tr = 2 p3

In general, after the ith phase remaining computation

m

Wri = pd × td −∑ pi × ti …………………..(3.11)
i=1

or Wr = Wr − p × t ……………………..(3.12)i i−1 i i

60

www.manaraa.com

And the time required to complete the remaining computation Wri after phase i is

Writri = …………………………………..(3.13)
pi+1

Wri − p × t−1 i itri = …………………………(3.14)
pi+1

If the application consists of n phase the execution time of the application is

Wrn−1t = (t + C) + (t + C) + ⋅ ⋅ ⋅ ⋅ ⋅ + (t + C) + …. (3.15)1 a1 2 a2 n−1 an−1 pn

3.3.4 Negotiation

If the workload consists of malleable and rigid applications only, all negotiations

are initiated by the RMS. The negotiation cost has two components: the communication

time required to send and offer or counteroffer from the RMS to the application and vice

versa, and the time required by the application or RMS to make a decision. In a cluster

environment where load is controlled, it is reasonable to assume that the communication

cost between the RMS and the application do not vary from one negotiation to another.

Since the RMS knows the global system state and it follows a specific system policy, we

assumed that the decision making time for the RMS does not vary from negotiation to

negotiation or from application to application. However, since each application is

different, the time required to respond to an offer from the RMS may vary from

application to application. For most applications, the response time is low and for few

applications it may be high. In addition, the number of rounds in each negotiation may

vary from application to application and negotiation to negotiation.

61

www.manaraa.com

From the above discussion it is apparent that the negotiation cost depends on the

communication time, the response time and the number of rounds required to conclude a

negotiation. We have modeled the negotiation cost by aggregating these factors into a

single parameter Cn. We have chosen two models for the variation of the negotiation

cost. In the simpler model the variation is zero. That is, for a given workload, the

negotiation cost is constant. In the other model, negotiation cost varies from application

to application and negotiation to negotiation, and it is low for most applications and it

maybe high for a few applications. In this model the negotiation costs follow a random

ramp distribution. The probability decreases linearly as the negotiation cost increases.

3.3.5 Adaptation Cost

An application executes an agreement by shrinking or expanding. Shrinking

involves redistributing data, destroying processes and releasing idle processors.

Expanding involves spawning processes on the additional allocated processors and

redistributing data. The cost of data redistribution depends on application’s business logic

and data structures. As a result, it varies from application to application. In addition, for

the same application the redistribution cost depends on the variation of the number of

processors that the application is using before and after adaptation. We have assumed that

for a given application, the adaptation cost is linearly proportional to the change in

number of processor.

62

www.manaraa.com

We have modeled the adaptation cost of an application for change in one

processor by single parameter C. After execution of an agreement if an application

changes the number of processors from p1 to p2 the adaptation cost is

……………………………….. (3.16)

Like the negotiation cost, the adaptation cost is chosen in two ways to model the

variation of adaptation cost per processor from application to application. In the simpler

model the variation is zero. Therefore, for a given workload the cost is constant. In the

other model, the adaptation cost varies from application to application, and it is low for

most applications and high for a few applications. Parallel applications which have low

adaptation cost are most amenable to conversion into malleable application;

consequently, it is reasonable to assume that for most applications the adaptation cost will

be low. For the adaptation cost we have adopted the same distribution as negotiation cost.

Ca = C × p1 − p2

3.3.6 Performance Metrics

The average turn around time has been selected as a metric for measuring

application performance. Utilization has been selected as a metric for measuring system

performance. The turn around time (TAT) for an application is defined as the time taken

from submission of an application to the system until its completion of execution. The

average turn around time is defined as the arithmetic mean of the turn around time of all

applications in the workload. The schedule span is defined as the time between the arrival

of the first application in the system and the completion of the last application for a given

63

www.manaraa.com

workload. Utilization is defined as the fraction of total available CPU cycles during the

schedule span that have been used by all the applications in the workload.

Let us assume that for a given workload W the

Total number of applications is: m
Arrival time of application i is ta

i

Start time of application i is: ts
i

Completion time of application i is: tc
i

Execution time of application i is tex
i = tc

i - ts
i

Arrival time of first application is: ta
1

Completion time of last application is: tc
m

Total number of processors in the system is: p
 Then,

The waiting time for application i is: tw = (ts
i – ta

i)

The turn around time for application i is: TAT = (tc
i – ta

i) …………………..(3.1)

The average turn around time for workload W is

m

<Avg. TAT> = 1/m Σ (tc
i – ta

i) .………………………(3.2)
i = 1

The schedule span is:

ss = (tc
m – ta

1) ……………………………………(3.3)

The cost of an application is defined as total the CPU time consumed by an application

during its execution. For example, if a rigid application runs on 4 processors for 100

seconds the cost of the application is 4 x 100 = 400 seconds, or if a malleable application

runs on 4 processors for 100 seconds, and then on 8 processors for 100 seconds, then the

cost of the application is 4 x 100 + 8 x 100 = 1200 seconds.

Let the cost of an application i be Ci
app

The total processor cycle available during the schedule span is (p*ss).

64

www.manaraa.com

m

Therefore the utilization is: U = Σ Ci
app / (p*ss) .……………(3.4)

i = 1

To compute performance metric the arrival time, the start time, and the

completion time is needed for each application in a workload. Numerical simulation of

the mathematical model described in the previous sections will provide these values. The

workload model provides the arrival time. Scheduling algorithm and negotiation model

provide the start time. Application model and adaptation model provide the completion

time. From the numerical simulation the performance metric can be computed for a

workload.

3.4 Summary

We have described an adaptive parallel system and a conceptual model for an

adaptive parallel system. We have developed a semi-formal mathematical model of an

adaptive parallel system with malleable applications which is numerically simulated with

a discrete event simulator presented in chapter IV. Utilization and average turn around

time has been selected as measure of performance for RMS and application respectively.

A malleable application consists of phases. During a phase, a negotiation occurs

between a running malleable application and the RMS. If there is an agreement between

the application and the RMS, then at the phase boundary the application adapts and

change the number of processors utilized. To calculate the performance metric for a given

workload, we need to know the arrival time, the starting time and the completion time of

each application in the workload. The workload generated from the workload model

described in section 3.4.3 provides the arrival time, processor requirements, and total

65

www.manaraa.com

 computation of each application. The numerical simulation of a workload provides the

start time for each application. During a simulation the remaining computation time after

a phase change can be predicted using equation 3.14. During a simulation the scheduler

determines whether a running application will go through a phase change.

Chapter IV describes a discrete event simulator developed for numerical

simulation of an adaptive parallel system with malleable application. A prototype

implementation of an adaptive RMS capable of handing malleable application has also

been presented in chapter IV.

66

www.manaraa.com

CHAPTER IV

SIMULATOR FOR AN ADAPTIVE PARALLEL SYSTEM

In Chapter III a model for an adaptive parallel system has been presented. In this

chapter, we present the design and implementation of a discrete event simulator of the

model discussed in chapter III. This chapter also presents the implementation of a

prototype system for an adaptive parallel system. The experimental results with the

prototype system are discussed in this chapter.

Simulation is one of the most widely used scientific techniques for studying a

system [56]. A system is defined to be a collection of entities, e.g. people, machine etc.

that act and interact together towards the accomplishment of a goal [64]. The entities of

the system are: the users, the resource management system, and the running applications.

An adaptive parallel system can be considered as a discrete event system because events

such as the submission of an application or the completion of an application occur at

discrete points in time. As a result, the state of the system changes at discrete points in

time.

4.1 Discrete Event Simulator

Although discrete event simulators are used to simulate different type of real

world system, they all share a number of common components and logical

67

www.manaraa.com

organization[56]. The following components are present in most discrete event

simulators.

System State: A collection of variables called state variables which describe the

state of a system at a particular time.

Simulation Clock: Because of the dynamic nature of the simulation, a mechanism

keeping track of simulation time is required, and a mechanism is required to advance the

time as the simulation progresses. A variable that contains the current value of simulation

time is used to keep track of time. There are two main mechanisms of advancing the

simulation clock: the fixed-increment time advance and the next-event time advance. In

fixed-increment time advance, the simulation clock is advanced by a fixed value Δt. After

each increment, a check is made whether any events have occurred during the previous

interval Δt. If any events have occurred, they are processed and the system state is

updated accordingly. In next-event time advance approach the simulation clock is

advanced to the time of occurrence of the next event, and the event is processed.

Event List: A list containing the events and time when they will occur. The list is

usually sorted in increasing order of event time.

Statistical Counter: Contains variables used for storing information about system

performance.

Initialization Routines: Subprograms to initialize the simulation model at time 0.

Timing Routine: A subprogram that determines the next event time and advances

the simulation clock to the next event time.

68

www.manaraa.com

Event Routines: Subprograms that process events and update the system state

when an event occurs. In general there is at least one subprogram for each type of events.

Report Generator: Subprograms that computes estimates of the desired

performance measures at the end of simulation.

Main Program: The subprogram that coordinates the simulation. It is also known

as the simulation executive. The main program invokes the timing routine to determine

the next event time, and it invokes the corresponding event routine to update the system

state.

The flow of control and relationship among the components are shown in figure

4.1. At time t = 0 the main program invokes the initialization routine, which sets the

simulation clock to zero, initializes the state variables and creates the event list. The

initialization of state variables and the event list may involve reading simulation inputs

from a file. After the control is returned to the main program, it invokes the timing

routine to determine the next event type, and then it invokes the appropriate event routine

to process that event. Event routines generally perform three types of activities, i)

updating the state variables, ii) updating the statistical counter, and iii) generating future

events and inserting them into the event list. The invoking of the timing routine and of

the event routine is repeated until all the events in the event list is processed. The main

program then calls the report generator to compute the performance indicator and

generate a report.

69

www.manaraa.com

Start

Initialization routine

1. Set simulation clock = 0
2. Initialize system state and

statistical counters
3.Initialize event list

Main program

1
1. Invoke the initialization routine

2. Invoke the timing routine
Repeat 3. Invoke the appropriate

event routine

3
Event routine i

1. Compute
2. Update system state
2. Generate future events and add to event list

Timing routine

1. Get next event and 2 determine event type i
2. Advance the simulation

clock

Library routine

 Generate random numbers

NoIs
simulation

over?

Report Generator Yes

1. Compute estimates of interest

Stop

Figure 4.1 Flow control of discrete event simulator

4.2 Simulator for Adaptive Parallel System

A simulator for the numerical simulation of an adaptive parallel system such as

the one described in chapter III has been developed from scratch. We have examined a

few open source off the shelf simulators. None of them were found to be suitable for our

simulation purpose. Modifying them to adapt for our purposes seemed to be more work

than developing a new one from scratch. Figure 4.2 shows the logical organization of the

simulator. The simulator is composed of the following major modules: the executive, the

initialization routine, the scheduler, the negotiator, and the dispatcher. In addition, the

70

www.manaraa.com

simulator uses several data structures which constitute the system state. The following

subsections briefly describe the modules of the simulator.

4.2.1 System State

The system state contains the several data structures representing the state of the

adaptive parallel system during a simulation. The system state contains the following data

structures.

Event List: This list contains the events that will occur during the simulation.

Each entry in the list represents an event. Each event has a type, time of occurrence, and

the job id with which the event is associated. Our simulator handles only two types of

events: a job submission event and a job completion event. The event list is created by

the initialization routine. The event list is updated by the executive and the dispatcher.

The event list is sorted in increasing order of event time.

Pending Job List: This list contains information about all the applications in a

given workload. The list is sorted in order of job arrival time. The initialization routine

creates the pending job list. Each entry of the list contains the following information: the

job id, the job type (rigid/malleable), the arrival time, the default processor requirement,

the execution time on the default number of processors, the minimum and the maximum

processor that the job can utilize.

Running Job List: This list contains information about all the jobs that are

currently running. In addition to the information of pending job, each entry in the list

contains the following information: the start time, the number of processor currently

allocated, the amount of work remaining after the last phase change, the time when last

phase change has occurred. The list is created and updated by the dispatcher.

Job Completion List: This list contains information about all the jobs that have

completed their execution. In addition to the information present in an entry in the

running job list, each entry in the list contains the completion time. The list is created by

process completion module. The performance metrics are calculated from this list.

71

www.manaraa.com

Event list

Pending list

Running list

Complete list

Parameters Schedule

Initialization
Routine

Proposal

Update

Agreement

Schedule
Executive Scheduler

Negotiator

Process JobDispatcher
Completion

Initialize
Simulation

Clock

System
State System State

Figure 4.2 Organization of the simulator for an adaptive parallel system

System Parameters: The parameters are: the minimum negotiation time, the

maximum negotiation time, the percentage of negotiation success rate, the minimum

adaptation cost, the maximum adaptation cost, the total number of processors in the

cluster, the name of the workload file, and the name of the statistic file. These values are

initialized by initialization routine.

4.2.2 Executive

The executive is the coordinator of the simulator. It coordinates the other modules

and drives the simulation. The algorithm and flow diagram for the executive are show in

Figure 4.3 and Figure 4.4. The coordinator first calls the initialization routine which

initialized the system state. It then enters into a loop. Inside the loop it removes the next

event from the event list and processes the event by invoking other modules. While

72

www.manaraa.com

Input: None

Output: A file containing the statistics of the simulation run

1. Initialize

2. while event list not empty

3. Remove next event from event list

4. if event = job completion

5. move completed job from running list to completion list

6. update system state

7. if event time <= simulation clock

8. go to step 3.

9. simulation clock ← event time

10. schedule ← scheduler(System State)

11. agreement ← negotiator(proposed agreement)

12. update schedule

13. simulation clock = simulation clock + negotiation overhead

14. dispatcher(schedule)

15. end while

16. calculate statistics

17. write statistics to output file

Figure 4.3 Algorithm for the simulation executive

processing an event, the executive updates the simulation clock and the system state. This

process continues until the event list is empty and the simulation ends.

73

www.manaraa.com

Start

No

Yes

No

No

Yes

Initialize

Is event
queue

empty?

Remove next event

Update Simclock to event time

Call Scheduler

Is event=
Job

completion?

Is event
time=

Simclock?

Invoke Negotiation Manager

Simclock=Simclock+Overhead

Invoke Dispatcher

Write complete list in file

Move job from running list to complete list

Update system table Yes

1. Create pending queue
2. Create event queue
3. Set simclock to 0

Exit

Figure 4.4 Flow diagram for the simulation executive

74

www.manaraa.com

Input: workload file, system parameter file

Output: Updated system state.

1. Read workload file

2. Create pending job list

3. for each job in the pending list

4. create an event

5. event type ← job submission

6. event time ← arrival time

7. id ← job id

8. insert event in event list

9. end if

10. sort event list on event time

11. sort pending list on arrival time

12. read system parameter from parameter file

13. simulation clock ← 0

14. end

Figure 4.5 Algorithm for the initialization routine

4.2.3 Initialization Routine

The initialization routine is invoked by the executive. It reads the workload and

parameter files and initializes the system state. It also sets the simulation clock value to

zero. Figure 4.5 show the algorithm for initialization routine.

75

www.manaraa.com

4.2.4 Scheduler

The scheduler module is invoked by the executive. The scheduler creates a

schedule and returns the schedule to the executive. A schedule consists of two data

structures: a jobs to start list and a negotiation proposal list. Each entry in the jobs to start

list contains the job id of a pending job and the number of processors allocated to it. Each

entry in the proposal list contains the id of a running malleable job, an indicator whether

the job needs to shrink or expand and the number of processors the job needs to release or

receive. The algorithm and flow diagram for scheduling are shown in Figure 4.6 and

Figure 4.7. The scheduler creates the schedule according to the following policy.

First Come First Serve: Pending jobs are scheduled according to the arrival time.

Maximum fit: Schedule as many job as possible in a scheduling cycle. This is

done by allocating the minimum number of processor for pending malleable jobs.

Pending Job Priority: Pending jobs are given priority over malleable jobs. If idle

processors are available the scheduler tries to schedule pending jobs first. If enough idle

processors are not available to schedule pending jobs the scheduler tries to preempt the

required number of processors from running malleable jobs. If idle processors are

available after scheduling pending jobs, or there are no pending jobs then only the idle

processors are allocated among running malleable jobs.

Shrinkage and Expansion: Preempt processors starting with the running malleable

job which started earliest, then from the next one and so on. Preempt the maximum

possible number of processors from jobs starting with the first. This policy reduces the

number of negotiations required. For example, assume eight additional processors are

required to schedule a pending job and there are four running malleable jobs each of

which can release five processors. The scheduler will decide to preempt five processors

from the first job and three from the second job, which will require negotiation with two

applications, as opposed to preempting two processors from each job, which will require

negotiation with four jobs. Allocation of idle processors among running jobs adopts the

same policy.

76

www.manaraa.com

The jobs to start list is created in two steps. In the first step, an initial list is

computed according to the maximum fit policy. If after the first step idle processors are

available, they are allocated to the jobs in the initial list on a FCFS basis in the second

step. For example, assume that there are ten idle processors and three pending malleable

jobs. Each of the malleable jobs can run on any number of processors between 4 and 12.

In the first step, job one and jobs two will be allocated 4 processors each following the

maximum fit policy. Job three cannot be included in the list because it requires a

minimum of four processors and there only two processors available. Now in the second

stage, the two remaining processors will be allocated to job one. The final jobs to start list

will contain job one with six processors and job two with 4 processors.

If idle processors are available after refining the initial list, and there are pending

jobs and running malleable jobs, then the scheduler tries to schedule pending jobs by

preempting processors from running malleable jobs. The scheduler first computes the

maximum number of processors that can be preempted from running malleable jobs. The

scheduler then tries to allocate processors to pending jobs according to the maximum fit

policy, assuming that the preemptable processors are available. If idle processors are

available after refining the initial list, and pending jobs cannot be scheduled by

preempting processors from running jobs, then the idle processors are allocated to

running malleable jobs on a first start first get basis. The scheduler does not actually

preempt processors from running jobs. It just makes the decision on which pending jobs

to start, which running jobs to shrink or expand. In other words it proposes a schedule but

does not execute a schedule.

77

www.manaraa.com

Input: System State

Output: Schedule

1. create initial schedule

2. Refine schedule

3. if idle processor > 0 and running malleable > 0

4. if no. of pending job > 0

5. calculate preemptable processors

5. schedule pending job

6. create proposal for processor preemption

7. end if

8. create proposal for processor allocation to running job

9. end if

10. return schedule

Figure 4.6 Algorithm for the scheduler

4.2.5 Negotiator

The module negotiator simulates the negotiation between the RMS and the

applications. The negotiator is invoked by the executive. The input to the negotiator is a

proposal list and the output is an agreement list and the negotiation overhead. Each entry

in the proposal list contains a job id, a shrink or expansion indicator, the number of

processors to be released or received by the running malleable jobs, and a negotiation

status field. The algorithm and flow diagram for the negotiator are shown in Figure 4.8

and Figure 4.9. The negotiation is carried out sequentially one after another. At the

beginning of the negotiation cycle, the negotiation overhead is set to zero. The

negotiation overhead is the sum of costs of all negotiations carried out in a negotiation

cycle. To determine the negotiation cost, the negotiator invokes a routine with maximum

and minimum negotiation costs as parameters. The routine stochastically selects the

78

www.manaraa.com

negotiation cost from a random ramp distribution. Whether the negotiation succeeded or

failed is determined stochastically. In case of shrinkage the agreed number of processor is

determined by randomly selecting an integer between 0 and the maximum number of

processors that the job can release. In case of expansion the agreed number of processor

is determined by randomly selecting an integer between 0 and the maximum number of

additional processors that the job can consume.

Start

Get available processor

Create initial schedule

Refine schedule

If idle processor available
Try to schedule pending job by

shrinking running malleable jobs

Allocate idle processor (if any) to
running malleable jobs

Update agreement list

Update agreement list

Return schedule

Figure 4.7 Flow diagram for the Scheduler

79

www.manaraa.com

Input: Proposal list

Output: Agreement

1. overhead ← 0

2. while proposal list not empty

3. get next proposal

4. overhead ← overhead + get negotiation cost(min. neg. cost, max.

neg. cost);

5. negotiation status ← get negotiation status(success rate)

6. processor ← get negotiated processor no()

7. update agreement list

8. end while

6. return negotiation overhead and agreement list

Figure 4.8 Algorithm for the negotiator

4.2.6 Dispatcher

The dispatcher executes a schedule. The algorithm and flow diagram for the

dispatcher are shown in Figure 4.10 and Figure 4.11. The schedule consists of two lists:

the jobs to start list and the agreement list. The executive invokes the dispatcher by

passing the schedule. The dispatcher first executes the agreements in the agreement list. It

removes the next agreement from the agreement list. It computes the remaining

computation Wri of the application after adaptation according to equation 3.12. It

computes the time required to finish the remaining computation tri according equation

3.13. The dispatcher then stochastically determines the cost of adaptation by invoking the

get adaptation routine. It then computes the new completion time of the running

malleable jobs. It updates the event list by changing the corresponding event time to new

80

www.manaraa.com

Start

Set overhead to zero

Is proposal
list empty?

Get next proposal

Compute negotiation cost
Compute agreed no. of processor

Determine negotiation status
Overhead=Overhead+ Negotiation cost

Update agreement list

Return agreement list

Stop

Figure 4.9 Flow diagram of the negotiator

completion time. The dispatcher also updates the current allocated processors in the

running job list and the number of idle processors available.

81

www.manaraa.com

Input: schedule (jobs to start list and agreement list)

Output: updated system status

1. while agreement list is not empty

2. remove next agreement

3. Wri ← Wri-1 – pi*ti
4. tri ← Wri/pi+1

5. adaptation cost ← get adaptation cost(min. adapt. cost, max. adapt.

cost)

6. tc ← simulation clock + adaptation cost + tri

7. update job completion event in the event list

8. update job info in running job list

9. update available processor

10. end while

11. while jobs to start list not empty

12. remove next job

13. Wr ← (pd*td)

14. tc ← simulation clock + Wr/p1

15. ts ← simulation clock

16. insert job completion event in the event list

17. move job from pending list to running job list

18. update available processor

19. end while

20. sort event list

Figure 4.10 Algorithm for the dispatcher

After executing all the agreements, the dispatcher executes the jobs to start list.

For each job in the list it computes the completion time of the job, creates a job

completion event and inserts the job completion event in the event list. It also moves the

job from the pending list to running job list and sets the start time and current allocated

processor. The dispatcher then sorts the event list in order of event time.

82

www.manaraa.com

 Is jobs to
start list
empty?

Start

No

Yes Is
assignment
list empty?

Remove next assignment

Compute adaptation cost

Compute new completion time

Update running job list
Update event list

Update processor available

Using negotiation info &
probability distribution

From application model

Figure 4.11 Flow diagram for the dispatcher

No

Get next job

Exit

Compute completion time

Invert job completion event

Move job from pending queue to running job list
Start time simulation clock

Yes Is jobs to
start list
empty?

 83

www.manaraa.com

4.2.7 Implementation

The simulator has been implemented as a single program with one thread of

execution. All the modules were implemented as separate subroutines. The simulator was

implemented in C on a Linux platform. During the development of the simulator, the

incremental development model was followed. As each increment was built the

components underwent thorough unit testing. Each developed increment was

continuously integrated with the previous one and an integration test was performed.

4.3 Prototype Resource Management System

We have developed a prototype resource management system capable of handling

malleable jobs. There were three objectives for the development of the prototype RMS.

The first objective was to use it as a tool to study an adaptive parallel system. The second

objective was to get an idea about the realistic values of system parameters such as

negotiation costs, adaptation costs etc. The third goal was to generate some real world

data which could be used to validate the simulator described in the previous section.

Developing a full blown RMS and malleable applications with different characteristics is

labor intensive, time consuming and a costly task. We have implemented the prototype

RMS with minimum functionality and implemented one malleable application. We took

the path of least resistance to get to a working system, so that we can use it to study an

adaptive parallel system and generate some real data. The implementation of the

prototype system and the results of experimentation with it are discussed in this section.

In order to manage malleable applications, interactions between the RMS and the

applications are required. Because of the resource utilization pattern of malleable

84

www.manaraa.com

Event
Handler

Controller

Node Controllers

Running
Applications

user
Job
submission

events

Event
Handler

update System
State Read State update

Poll Events
invoke

Job Server Controller Scheduler
Completion

New Job List
New Job List

Neg. Status
Neg. List

update
Dispatcher Negotiation

Manager

Mal. Job
job info

Registrati

Node Controllers

invoke

negotiate

Running
Applications Execution of agreement

Figure 4.12 Architecture of the prototype RMS.

applications, a simple accept/reject type of communication with the RMS is not enough

[16]. Managing negotiations with running malleable applications is one of the critical

requirements of an adaptive RMS. For such negotiation management, an adaptive RMS

must perform the following additional functionalities compared to a traditional RMS: i)

carry out negotiations with the running malleable applications; ii). allocate/claim

resources to/from the running malleable applications; iii). make decisions to allocate idle

resources among the running malleable applications; and iv) choose resource preemption

candidates among the running malleable applications.

85

www.manaraa.com

4.3.1 Architecture and Implementation

Figure 4.12 shows the architecture of the RMS for malleable applications, based

on the requirements mentioned above. The RMS has two parts: a server and node

controllers. The server is responsible for gathering information about the available

resources, accepting jobs from the users, organizing those jobs in queues, and initiating a

schedule cycle. Once a schedule is contrived, the server contacts the individual node

controllers, which place applications into execution. There is one node controller per

computational node. Each controller acts as an agent of the server and starts and controls

applications on the nodes.

The server consists of the following components: the event handler, the controller,

the scheduler, the negotiation manager and the dispatcher. The event handler and

controller are two separate threads of execution that are running concurrently. The server

also manages information about the system through a data structure called system state.

The system state maintains information about the current state of the RMS. It consists of

following information: i) pending job queue - list of jobs submitted by users organized in

a FIFO Queue, ii) list of running rigid jobs, iii) list of running malleable jobs, iv) resource

information, and v) pending event queue. The event handler accepts events external to

server and updates the system state. Currently the event handler responds to three types

of events: job submissions by users, job completion notifications by the node controllers

and registrations by running malleable jobs. Out of these events, job submission and job

completion are scheduling events, meaning that the server initiates a scheduling cycle in

response to these events.

86

www.manaraa.com

A user submits a job for execution by submitting a script containing information

about the application to executed. Jobs are submitted through a client program. In the

submission script the users have to mention the job type (whether a job is rigid or

malleable), and the minimum and the maximum processors requirement of the job (in

case of malleable job). The event handler receives the job information from the client

program and inserts the job information in the pending job queue; it also pushes the job

submission event in the event queue. When a running job completes its execution, the

node controller that had started the job sends a job completion notice to the event handler.

The event handler updates the resource information, running job list, and pushes a job

completion event in the event queue.

When a malleable job starts execution, it first opens a socket and sends the host

and port information to the event handler. This process is called job registration. When

the event handler receives this information it stores this information in the running

malleable job list. The purpose of registration is to enable communication between the

server and running malleable application, whenever expansion or shrinkage of running

malleable jobs is required.

Whenever there is a scheduling event in the event queue, the controller removes

the events and initiates a scheduling cycle by calling the scheduler. There can be two

events (ex. a job submission and running job completion at the same time) arriving at the

same time in the event queue. In such a case, the controller component of the server

removes both the event from the queue and initiates a single scheduling cycle. The

scheduler computes a schedule and sends a list of pending jobs to be started with logical

87

www.manaraa.com

processor assignment to the controller. The controller sends the list of jobs to be started to

the dispatcher.

The scheduler computes a schedule based on system state and scheduling policy.

A schedule consist of three lists: a list of pending jobs to be started with logical processor

assignment, a list of running malleable jobs with number of processor to be releases by

shrinking, and a list running malleable jobs with number of additional processors

allocated to them for expansion. After a scheduling cycle, all or any of these lists can be

empty. The scheduling policy adopted in present RMS is FCFS (First Come First Serve),

and pending new jobs are given priorities over running malleable jobs.

During a scheduling cycle, first a jobs to start list is created by allocating a

minimum number of processors to the pending jobs as long as resources are available. If

enough processors are not available to schedule pending jobs, the scheduler makes

decision to preempt processors from running malleable jobs (if there are any) in order to

schedule pending jobs. The scheduler computes the maximum number of processors that

can be preempted from all running malleable jobs and tries to schedule as many pending

jobs as possible. Once scheduling decisions of pending jobs are made, the scheduler

selects the preemption candidates among the running malleable jobs. The required

number of processors is preempted starting with the maximum possible number of

processors from the running malleable job that has started the earliest, continuing with

next malleable job and so on. If idle processors are available and no jobs are pending, or

idle processors are not enough to fulfill the minimum processor requirement of the next

pending job in the queue, the idle processors are allocated to running malleable jobs.

88

www.manaraa.com

During allocation of idle resources, the malleable job which has started the earliest is

given its maximum number of processors, provided enough processors are available.

Otherwise the job is allocated the available number of processors. This continues as long

as processors or running malleable jobs are available.

The scheduler does not start a pending job or preempt processors from running

jobs. It just makes the decision which pending jobs to start, which running jobs to shrink

or expand. Once a schedule is computed, the scheduler sends the list of jobs to shrink and

the list of jobs to expand to the negotiation manager. When the scheduler receives the

negotiation status from the negotiation manger, it sends the list of pending jobs to be

started to the controller. Ideally the scheduler may need to re-compute the schedule,

based on the negotiation status, which in turn may require further negotiations; i.e. the

scheduler may work in multiple stages until a final schedule acceptable to all parties

involved is computed. The scheduler in the prototype implementation is a single stage

scheduler, it does not re-compute based on the result of the negotiation.

The negotiation manager negotiates with running malleable jobs, executes the

expansion or the shrinkage of the running jobs, and also updates the system state. The

expansion and shrinkage of malleable applications is a two-step process. In the first step,

the negotiation is carried out; once an agreement is reached, the agreement is executed in

the second step. In the case of expansion, the execution involves sending the list of

physical processors to the application, and updating the system state. In the case of

shrinkage, the execution involves receiving the list of processors released by the

application, and updating the system state. In the present implementation, both the

89

www.manaraa.com

negotiation and the implementation of an agreement are carried out by the negotiation

manger. The negotiation is carried out sequentially starting with the first job in the

negotiation list. Once negotiations and execution of agreements are complete, the

negotiation manger sends the negotiation status back to the scheduler. For the prototype

implementation, the negotiation cost between the scheduler and the malleable

applications has been measured and was found to be very low (1.5 milliseconds on

average for one round of negotiation) compared to the typical execution time of parallel

applications.

The controller invokes the dispatcher and sends the list of pending jobs to be

started. The dispatcher reads the system state and assigns physical processors to the

pending jobs to be started. It then creates a configuration file containing the list of

physical processors allocated to the job, much like PBS node file for MPI jobs. This file

is used by the application to spawn processes on the allocated processors. The dispatcher

then sends the job information to the designated node controller to start the job. After the

job is started, the dispatcher updates the system state. Like the negotiation manager, the

dispatcher also works sequentially.

4.3.2 Resource Negotiation Protocol

In order to manage adaptive applications, interactions between applications and

the RMS is required. The communication scenarios that may occur between adaptive

applications and an RMS may widely vary: Two examples are briefly described below:

90

www.manaraa.com

1. A malleable application, which requires that the number of processors be a power

of 2. The minimum and maximum processor requirement is 8 and 32,

respectively. Currently, the application is executing on 8 processors. In mid

execution, the RMS may offer 15 processors to the application. Since the

application can use only 8 additional processors out of 15 offered, instead of

rejecting the offer, the application may ask the RMS to allocate 8 additional

processors.

2. In an environment where applications pay for resources, when some idle

resources are available, the RMS may offer the resources to a malleable

application for a price. The application may be willing to accept the additional

resources at a lower price, and therefore makes a counter offer. Depending on the

policy, the RMS may accept or reject the offer or even make another counter

offer.

From the above scenarios, it is evident that a simple accept/reject type of

communication is not enough. A complex multi-round negotiation between applications

and the RMS is required to support a wide variety of parallel adaptive applications. For

negotiation of resources between adaptive applications and the RMS, a negotiation

protocol has been developed and implemented.

Figure 4.13 shows the finite state machine representation of the negotiation

protocol. The initiator (either applications or the RMS) specifies resource requirements

and associated terms and conditions. The other party examines the resource request and

responds. The response can be accept, reject, or a counter offer with modified

91

www.manaraa.com

requirements. At any time during the negotiation, any party can send a final offer

indicating that no further negotiation can be done. The other party can either accept or

reject the offer. Also, during the negotiation, any party can accept or reject an offer and

thus terminate the negotiation. The negotiation results in either accepted or rejected

status. In the case of an accept, the agreed resources are allocated. All the information

regarding a negotiation (resources requested, terms and condition etc.) is encapsulated in

an object, which we call the Negotiation Template (NT). The negotiation takes places by

exchanging this template. It is composed of three sections. The first section contains

general information related to the two parties. The second section contains the status of

the negotiation, and the third section contains a list of resource objects that are being

negotiated. Each resource object has information about the resource being negotiated, the

quantity of the resource being requested, and the status of each resource request. An NT

can have more than one resource request inside it. Each resource request has its own

terms for the negotiation and its own status. The overall status of the negotiation depends

on the combined status of all the requested resources. A detailed description of the

resource negotiation protocol is described in [16][17]. A set of APIs that can be used by

adaptive applications and the RMS for resource negotiations has been developed. The

negotiation manager uses these APIs to communicate and negotiate with malleable

applications.

92

www.manaraa.com

 N T

 N T< A p p , R ep ly>

< R M S , F ina l o ffer >

O ffer
R M S

< R M S /A pp , req u est for resou rce n egotia tion >

< R M S , R ep ly >

O ffer
A p p

< A p p , F in al o ffer >

< R M S /A pp R eject >

< R M S /A pp , A ccep t

A ccep t R ejec t

Figure 4.13 Finite state representation of the negotiation protocol

4.3.3 Workload

The workload creation for experiments in this research faces a unique problem.

The problem is to generate workloads with actual applications, which will run on the test

bed in a reasonable amount of time (since simulation is not being used) and that will be

similar in characteristics to workloads from a validated model or to traces from some

supercomputer center.

The workload model by Allen B. Downey [52] has been used to generate

workloads for experiments. Using Downey’s model, a rigid workload containing 120 jobs

has been generated. The number of jobs has been limited to 120, so that the jobs can run
93

www.manaraa.com

on a sixteen processors cluster (our test bed) in a reasonable amount of time. Actual

applications have been created according to the workload generated from the model.

From this original workload, several other rigid workloads have been created by

decreasing the inter-arrival time. Since the processor requirement and the execution time

remains unchanged, this results in a higher system load for the RMS. The factor by which

the inter-arrival time is decreased is called the shrinking factor. The shrinking factor of

the original workload is 1. When the load is low, the system utilization is low. As the

load increases, the utilization increases and reaches a saturation point. The saturation for

the generated workloads occurs at shrinking factor of 0.4.

From the rigid workload with shrinking factor of 0.4, several workloads

containing malleable jobs have been created. In order to study the impact of malleable

applications, three parameters of the workload have been varied: the number of malleable

jobs as percentage of total jobs, the processor flexibility range of malleable jobs, and the

distribution of malleable jobs in the workload. The percentage of malleable jobs was

varied between 0% and 100% to investigate the impact of number of malleable jobs on

performance. Workloads with 10%, 25%, 33%, 50%, 75 % and 100% malleable jobs

have been created. Both the flexibility range and flexibility of malleable jobs determines

how efficiently the RMS can adapt malleable jobs to utilize all the processors in the

cluster. The flexibility range of the malleable jobs was varied between 2 to 5, 2 to 6, 2 to

8, and 4 to 8 processors. To utilize all the processors in the system there have to be some

malleable jobs running at all times throughout the execution of a workload. A smart

scheduler is needed to make sure that some malleable jobs are always running. Since the

94

www.manaraa.com

RMS is using a FCFS scheduler, to avoid fragmentation, there has to be at least one

malleable job either running or waiting at the front of the pending queue at the time of

scheduling. The malleable jobs are distributed uniformly through out the workload.

4.3.4 Application

The Open System for Earthquake Engineering simulation (OpenSees) [62]

software for simulating seismic response of structural and geotechnical systems has been

selected as the test application. The application works in a master-worker fashion. It

consists of one coordinating process and one or more computing processes to perform the

actual simulation of structures’ response. The coordinating process takes a list of

allocated processors and a list of structures as input. Implemented using PVM [63], it

starts computing processes on each of the allocated processors and distributes the

structures for simulation until all the structures are simulated. The execution time of the

application is proportional to the number of structures to be simulated.

The model of the malleable version of this application have four properties: i) the

application can dynamically create and destroy processes; ii) it can accept a negotiation

request from the RMS and carry out negotiation; iii) the application can run on any

number of processors between a minimum and a maximum number of processors; iv) it

can release agreed upon processors without delay. The coordinating process has the

capability of changing the number of computing processes during execution by

dynamically creating new computing processes or destroying existing computing

processes. The coordinator process is also capable of accepting requests from the RMS

and engaging in resource negotiation. The negotiation results in either accepting or

95

www.manaraa.com

rejecting the offer from the RMS. The malleable application has two parameters: the

minimum and the maximum number of processors. As long as the negotiation results in

the total number of processors of the application to be between the minimum and

maximum, the offer from the RMS is accepted. Otherwise the offer is rejected. In case of

rejection, the RMS doesn’t terminate the application. The application continues to run on

currently allocated processors.

4.3.5 Results and Analysis

To evaluate the impact of malleable jobs on system and application performance,

the generated workloads have been executed on a dedicated cluster of 16 processors. The

results of the experiments, namely, the system utilization, the schedule span, and the turn

around time as a function of the composition of the workload (percentage of malleable

jobs) for different flexibility ranges are shown in table 4.1 and figures 4.14 to 4.18

respectively.

From figure 4.14 it can be seen that the utilization increases as the number of

malleable jobs in the workload increases. The utilization saturates at a job mix of about

33%, and it increases very little with the increase of number of malleable jobs after

saturation. For a flexibility range of 2-8, the utilization increases from 87% for an all

rigid workload to 90% for 10% of malleable jobs, and reaches a maximum of 100% for

all malleable jobs. The utilization is 98% for a job mix of 33%.The results also show that

for the same job mix the utilization is little lower for lower flexibility range. Almost full

(i.e., 99%) utilization is achieved with a workload containing all malleable jobs for all

96

www.manaraa.com

flexibility range. This indicates that the overhead of managing malleable applications is

very low.

Figure 4.15 shows the variation of utilization with the flexibility range for all job

mixes. Experiments have been carried out for three flexibilities: 3 processors (range 2 to

5), 4 processors (range 2 to 6), and 6 processors (range 2 to 8). In can be seen from the

figure that the utilization increases with the increase of flexibility of malleable jobs for all

job mixes. This is because with higher flexibility the scheduler has a higher probability of

filling up the cluster. The result also shows that the number of malleable jobs in the

workload has a more prominent impact on utilization than the impact of flexibility on

utilization.

For the same flexibility, the utilization also depends on the minimum processors

requirements. Figure 4.16 shows the variation of utilization for two flexibility ranges (2

to 6 and 4 to 8) with same flexibility (4 processors). It can be seen from the figure that the

utilization for the range 4-8 is lower than the utilization for the range 2-6 at lower job

mix, and the and the gap in utilization decreases as the number of malleable jobs

increases. This is because with lower minimum processor requirement, the scheduler has

a higher probability of scheduling a pending malleable job. For example consider the

scenario that there are 2 idle processors, all the running jobs are either rigid and/or

malleable running on minimum processors, and the job at the head of the pending queue

is malleable. In such a case, if the flexibility range of the pending malleable job is 2-6, it

could be started immediately, but if the flexibility range is 4-8, the job cannot be started.

It will have to wait until a running job exits and releases at least 2 more processors

97

www.manaraa.com

making the number of idle processors 4 or more. As the number of malleable jobs

increases, the probability of a malleable job running on more than its minimum

processors increases, which in turn increases the probability of releasing 2 processors by

shrinking running malleable to start the pending malleable jobs. As a result, the gap in

utilization decreases as the number of malleable job increases.

Figure 4.17 shows the plots for the schedule span as function of job mix. Similar

trends as those of utilization can be seen for the schedule span. The schedule span

decreases 668 seconds from 5058 for a rigid workload to 4390 for all malleable jobs for a

flexibility range of 2-8. For 10% malleable jobs the schedule span decreased to 4861

seconds. Moving from an all rigid workload to a 10% malleable job mix saves 10688 cpu

seconds.

The average turn around time (TAT) of figure 4.18 shows similar trends as

schedule span. The average turn around time decreases from 1968 seconds for a rigid

workload to 1849 seconds for 10% malleable jobs to a minimum of up to 1657 seconds

for 100% malleable jobs. For 33% malleable jobs the turn around time decreases to 1675

seconds. It means that for a job mix of 33% on average, an user has to wait 273 seconds

less to get his/her result after the submission of a job.

The improvement in performance in the presence of malleable jobs in the

workload comes at the expense of the execution time of the malleable jobs. The

experimental results show that in malleable mode, the execution time of a job increases in

general. Since the scheduler has to shrink a malleable job to accommodate the pending

jobs, on average, a job runs on a lower number of processors in malleable mode than it

98

www.manaraa.com

does in rigid mode. Table 4.2 presents the average execution time, average turn around

time, and average wait time for different job mixes for the flexibility range 2-8. The

graph of figure 4.19 shows the average execution time, the average turn around time, and

the average wait time as function of number of malleable jobs in the workload. From the

figure it can be seen that as the number of malleable jobs increases, the job execution

time increases on average. However, as the number of malleable job increases, the

average turn around time decreases. This is because with higher number of malleable

jobs, a job has to wait less in the pending queue.

Table 4.1 Utilization, schedule span and average TAT for different job mix in workload

%Job
Mix

Utilization Schedule Span(Sec) Average TAT (Sec)
2-5 2-6 2-8 4-8 2-5 2-6 2-8 4-8 2-5 2-6 2-8 4-8

0% .87 .87 .87 .87 5058 5058 5058 5058 1969 1969 1969 1969
10% .90 .91 .91 .89 4884 4872 4861 4949 1866 1858 1849 1886
25% .95 .96 .96 .95 4653 4613 4581 4661 1737 1711 1691 1735
33% .96 .97 .98 .96 4620 4560 4490 4569 1712 1696 1675 1711
50% .98 .98 .98 .97 4495 4487 4486 4539 1650 1647 1641 1665
75% .99 .98 .99 .98 4472 4483 4456 4486 1668 1658 1658 1637
100% .99 .99 1.0 .99 4470 4445 4390 4455 1672 1669 1657 1633

Table 4.2 Average execution time, turn around time and wait time for different job mix
in workload

% of
Job
Mix

Avg.
Exc.
Time

Avg. Turn
Around
Time

Avg.
Wait
Time

0% 154 1969 1815
10% 156 1849 1694
25% 161 1691 1530
33% 160 1675 1514
50% 192 1641 1449
75% 239 1658 1418
100% 284 1657 1373

99

www.manaraa.com

% of Job Mix Vs. Utilization

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

0 20 40 60 80 100

% of Malleable Jobs

Ut
ili

za
tio

n

Range 2 - 5
Range 2 - 6
Range 2 - 8
Range 4 - 8

Figure 4.14 Utilization as function of job-mix

Flexibilty Vs. Utilization

0.88

0.9

0.92

0.94

0.96

0.98

1

2 3 4 5 6 7

Flexibility

U
til

iz
at

io
n

10% Malleable

25% malleable

33% Malleable

50% Malleable

75% Malleable

All Malleable

Figure 4.15 Utilization as function of flexibility

100

www.manaraa.com

Figure 4.16 Utilization as function of percentage of malleable jobs

Dependency on minimum processor requirement for same
fexibilty range

0.88

0.9

0.92

0.94

0.96

0.98

1
U

til
iz

at
io

n

Range 2 - 6

Range 4 - 8
0.86

0.84

0.82

0.8

% of Malleable Jobs

%of Job Mix Vs. Schedule Span

4300
4400
4500
4600
4700
4800
4900
5000
5100

0 20 40 60 80 100 120

% of Malleable Job

Sc
he

du
le

 S
pa

n
(S

ec
)

Range 2-5
Range 2-6
Range 2-8
Range 4-8

Figure 4.17 Schedule span as function of job-mix

101

www.manaraa.com

% of Job Mix VS. Turn Arround Time

1500

1600

1700

1800

1900

2000

0 10 25 33 50 75 100

% of Malleable jobs

TA
T

(S
ec

s.
)

Range 2 - 5

Range 2 - 6

Range 2 - 8

Range 4 - 8

Figure 4.18 Turn around time as function of job-mix

Average Execution, Turn Arround and Wait Time
(Range 2-8)

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120

% of Malleable Jobs

Ti
m

e
(S

ec
.)

Avg. Ex. Time
Avg. TAT
Avg. Wt. Time

Figure 4.19 Average execution, turn around, and wait time as function of job-mix

102

www.manaraa.com

Model

Prototype Simulator

Realistic Workload

Real System

Synthetic Workload Model
Parameters

Validation Validation

Real Workload

New
Knowledge

Figure 5.1 Experimental procedure with the simulator

CHAPTER V

VALIDATION

In chapter III we have described the model of an adaptive parallel system and in

chapter IV we have described a discreet event simulator to simulate the model. Chapter

IV also presents a prototype implementation of the model. In this chapter and next

chapter we present the experimental results with the simulator. Figure 5.1 shows the

experimental procedure with the simulator.

103

www.manaraa.com

One can think that the model we have developed has three representations: the

prototype, the simulator and the real rigid parallel systems. The model was developed

based on real rigid parallel system as well as a hypothetical adaptive parallel system.

Consequently, one can think that the read rigid system is a representation of the model

and vice versa. To validate the model we need to validate the simulator against real

systems. We have validated the simulator against a rigid parallel system at San Diego

supercomputer center as well as against the prototype. For validation against rigid system

we conducted simulation experiments with real data obtained from workload logs at

SDSC [65] and compared the outputs of the simulation with the outputs of SDSC system.

For validation against adaptive system we conducted experiments with prototype system

with realistic workload. Simulation experiments were conducted with the same realistic

workload as input, and the output of the simulator and the prototype was compared The

realistic workload is generated using modifies Downy’s workload model. Once the

simulator is validated against the rigid and adaptive parallel system we conducted

simulation experiments with synthetic workloads and with different model parameters to

gain new knowledge about adaptive parallel systems.

In this chapter we present a set of experiments to validate the simulator while

Chapter VI presents simulation experiments to gain new knowledge about adaptive

parallel system. Two sets of experiments were performed for the validation of the

simulator. The first set of experiments is directed towards validating the model for rigid

parallel systems. The second set of experiments validates the model for an adaptive

104

www.manaraa.com

parallel system with malleable applications. Workload data from the prototype system

described in chapter IV has been used for the validation of the simulator.

The workload data for simulation experiments consists of information about a set

of applications. For each job, the workload data provides application type

(rigid/malleable), arrival time, number of processors required, and the execution time on

the required processors. In addition, for malleable applications the minimum and the

maximum number of processors that an application is capable utilizing are also provided.

5.1 Evaluation Method

In general a simulator is valid if it can accurately approximate the real system it is

simulating. The simulator is evaluated using two approaches: individual application data

and group data.

5.1.1 Individual Application Data

In this approach we run the simulator using data set from real systems. The

individual application data from the simulator output is compared with the output of the

real system. The start time and the completion time of each individual application from

simulator and real system is compared. For each data set the Euclidean Distance de of

each application’s start time, and completion time from simulator and real system output

is computed.

The Euclidean distance de between two points is p = (p , p ,...., p)1 2 n

and q = (q , q ,...., q) , in Euclidean n-space, is defined as:1 2 n

105

www.manaraa.com

x

n 2d ()p, q = ∑ pi − qi e
i = 1

()

Euclidean distance between two one dimensional points P = ()px andQ = (q) ,
the distance is computed as:

p − q(−q)2
=px x x x

Since time is a one dimensional data one dimensional Euclidean distance is used

as a metric to compare the start time Ts and completion time Tc between real system and

simulator output. The distance de should very small and should not vary from job to job.

A plot of de against job number should be a straight line.

5.1.2 Group Data

In this approach the performance metric of a workload (data set) is computed

from simulator and real system output. The performance metric for a workload are

system utilization U and average turn around time ATAT. The Euclidean distance

between utilization of real system Ur and simulator Us for all data sets are computed.

Similarly the Euclidean distance between average turn around time of real system ATATr

and simulator ATATs for all data sets are computed. The distance de should be very small

and should not vary from data set to data set. A plot of de against data set should be a

straight line.

In addition, for malleable workloads the trends in variation of U and ATAT

between simulator outputs are compared to real system outputs to see whether the trends

106

www.manaraa.com

are similar. To evaluate whether the behavior of the simulator scales properly, simulation

experiments are conducted with several synthetically generated malleable workloads. The

properties of the synthetic workloads are kept the same as those of the real malleable

workloads, except that the number of jobs in the workloads and the maximum number of

processors is increased proportionally. For synthetic workloads the simulation parameters

are set equal to the values measured from the real system except for the cluster size which

is increased proportional to the increase in number of maximum processor. For the

synthetic malleable workloads the trend in variation of utilization is compared to

variation in utilization in real system with malleable workload.

5.2 Experimental Data

For experiments with rigid data, workload log from San Diego supercomputer

center (SDSC) and data from the prototype system has been used. The SDSC data set

consist of 59725 jobs from April 1998 to April 2000. The jobs were executed on an IBM

SP2 computer comprised of 128 processors. The prototype data set consists of 120 jobs.

The jobs were executed on a cluster of 16 processors.

For experiments with malleable applications six data sets from the prototype

system have been used. Each data set consists of 120 parallel jobs with a processors

requirement vary between 2 to 8 processors. The minimum and maximum processor

requirement of malleable jobs were 2 and 8 respectively. The rigid run time of the job

varies between 100 and 800 seconds. The differences between the data sets are in

number of malleable jobs and in number of minimum and maximum processors for each

malleable job. Table 5.1 summarizes the characteristics of malleable datasets. To evaluate

107

www.manaraa.com

the scalability of the simulator, synthetic malleable workloads were generated using the

workload model described in chapter III Table 5.2 shows the characteristics of synthetic

malleable workloads.

Table 5.1 Malleable workload from prototype system

Data Sets No. of Jobs Min. # of
Proc.

Max. # of
Proc

Min. Run
Time

Max Run
Time

Pmin for
Malleable
Jobs

Pmax for
Malleable
Job

% of
Malleable
Job

1 120 2 8 100 800 2 8 10
2 120 2 8 100 800 2 8 33
3 120 2 8 100 800 2 8 50
4 120 2 8 100 800 2 8 75
5 120 2 8 100 800 2 8 100

Table 5.2 Malleable workload generated synthetically

Data Sets No. of Jobs Min. # of
Proc.

Max. # of
Proc

Min. Run
Time

Max Run
Time

Pmin for
Malleable
Jobs

Pmax for
Malleable
Job

% of
Malleable
Job

1 1200 2 32 100 800 2 32 10
2 1200 2 32 100 800 2 32 33
3 1200 2 32 100 800 2 32 50
4 1200 2 32 100 800 2 32 75
5 1200 2 32 100 800 2 32 100

5.3 Experimental Results

In order to validate the simulator we run two set of simulation experiments. The

First set of simulation experiments was conducted with rigid data sets. The second set of f

experiments was conducted with dataset containing malleable jobs.

5.3.1 Simulation with Rigid Data

The normalized Euclidean distance between the real system output and simulator

output for both application start time and application completion time is used as metric to

108

www.manaraa.com

1.1

Mean = 0.000627
0.9

N
or

m
al

iz
ed

 D
is

ta
nc

e

0.7

Std. Dev. = .000423

0.5

0.3

0.1

-0.1
0 100 200 300 400 500

Jobs
600 700 800 900 1000

Figure 5.3 Comparison of completion time of simulator and SDSC output

1.1
Mean = 0.000713

N
or

m
al

iz
ed

 D
is

ta
nc

e 0.9

0.7

Std. Dev. = .000523

0.5

0.3

0.1

-0.1
0 100 200 300 400 500

Jobs
600 700 800 900 1000

Figure 5.2 Comparison of start time of simulator and SDSC output

evaluate the how accurately the simulator approximate real system. The normalized value

is computed according to the following equation.

Normalized value = |(real system output – simulator output)| / real system output

109

www.manaraa.com

1.1

No
rm

al
iz

ed
 D

is
ta

nc
e 0.9

0.7

0.5

0.3

0.1

Mean = 0.000685
Std. Dev. = .000487

-0.1
1 20 39 58 77 96 115

Jobs

Figure 5.5 Comparison of completion time of simulator and prototype

1.1

No
rm

al
iz

ed
 D

is
ta

nc
e 0.9

0.7

0.5

0.3

0.1

Mean = 0.000721
Std. Dev. = .000511

-0.1
1 20 39 58 77 96 115

Jobs

Figure 5.4 Comparison of start time of simulator and prototype output

Figure 5.1 through 5.2 shows the graph of normalized Euclidean distance de for

application start time Ts and application completion time Tc for rigid data from San Diego

supercomputer center and prototype system.

110

www.manaraa.com

From Figures 5.2 - 5.5, it can be seen that the simulator outputs very closely

approximate the outputs of the real system. For all applications the difference between

real data and simulator output is less than 0.1 percent for both application start time and

completion time. The mean and standard deviation of distances for start time and

completion time is very low. Table 5.3 shows the comparison of system utilization and

average turn around time between real system and simulator output. From Table 5.3 it

can be seen that the system utilization and average turn around time of simulation output

very closely approximate those from real system. From experimental results presented

above it can be concluded that the simulator is a faithful representation of real system

with rigid applications.

Table 5.3 Comparison of utilization and average turn around time

Utilization Normalized
Distance

 Avg. TAT Normalized
Distance Real Simulator

Prototype 0.8733 0.8736 0.00037 1968 1997 0.0140
SDSC 0.7432 0.7434 0.00027 3157 3142 0.0047

5.3.2 Simulation with Malleable Data

For simulations with malleable applications, the negotiation cost and adaptation

cost of the actual prototype system for malleable application was measured. The

simulator parameters were set to actual measured values. Table 5.4 shows the simulator

parameter for experiments with malleable workloads presented in Table 5.2.

111

www.manaraa.com

Table 5.4 Parameters for simulation with malleable applications

Parameter Value
Minimum Negotiation Cost 0.0015 sec
Maximum Negotiation Cost 0.0015 sec
Minimum Adaptation Cost 0.002sec
Maximum Adaptation Cost 0.002 sec
Percentage of Successful
Negotiation

100

Size of cluster 16 processors

Figure 5.6 to Figure 5.15 shows the comparison of start time and completion time

of individual jobs of malleable workloads for data set 1 to data set 5. From the figures it

can be seen that for all workloads that the difference between the start times de(Ts)from

simulator of real system is very low. Similarly for completion time the difference de(Ts)

is very low. However, for some jobs the difference is larger than expected. For example

de(Ts) for job 19 of data set 3, de(Tc)for jobs 15, 19, 23, 26, 33, 36 of data set 2 jobs 13,

16 and 49 of data set 4 and job 36 of dataset 6 is more than 0.1. This means for these

cases the simulator output varies more than 10 percent compared to the real data.

There are two explanations for this variation. First, the model and subsequently

the simulator don’t take into account the unpredictable system variance in the real

system. For example in real system a job or the RMS may have to share a computing

node with other system processes, and, as a result, a job may start or finish its

computation later that expected. The average negotiation and adaptation cost from one

workload (data set 1) the real system has been used. as parameters for simulation

experiments, In reality these costs varies a little within a workload and from workload to

workload.

112

www.manaraa.com

No
rm

al
iz

ed
 D

is
ta

nc
e

1.1

0.9 Mean = 0.000716

0.7 Std. Dev. = .0035

0.5

0.3

0.1

-0.1
1 20 39 58 77 96 115

Jobs

Figure 5.6 Comparison of start time of for malleable data set 1 (10% job-mix)

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1 20 39 58 77 96 115

Jobs

No
rm

al
iz

ed
 D

is
ta

nc
e Mean = 0.000013

Std. Dev. = .0035

Figure 5.7 Comparison of completion for malleable data set 1 (10% job-mix)

113

www.manaraa.com

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1 20 39 58 77 96 115

Jobs

No
rm

al
iz

ed
 D

is
ta

nc
e

Mean = 0.036
Std. Dev. = .026

Figure 5.8 Comparison of start time of for malleable data set 2 (33% job-mix)

-0.1
0.1
0.3
0.5
0.7
0.9
1.1

1 20 39 58 77 96 115

Jobs

No
rm

al
iz

ed
 D

is
ta

nc
e

Mean = 0.042
Std. Dev. = .049

Figure 5.9 Comparison of completion for malleable data set 2 (33% job-mix)

114

www.manaraa.com

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1 20 39 58 77 96 115

Jobs

No
rm

al
iz

ed
 D

is
ta

nc
e Mean = 0.017

Std. Dev. = .09

Figure 5.10 Comparison of start time of for malleable data set 3 (50% job-mix)

-0.1
0.1
0.3
0.5
0.7
0.9
1.1

1 20 39 58 77 96 115

Jobs

No
rm

al
iz

ed
 D

is
ta

nc
e

Mean = 0.017
Std. Dev. = .02

Figure 5.11 Comparison of completion for malleable data set 3 (50% job-mix)

115

www.manaraa.com

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1 20 39 58 77 96 115

Jobs

No
rm

al
iz

ed
 D

is
ta

nc
e

Mean = 0.009
Std. Dev. = .008

Figure 5.12 Comparison of start time of for malleable data set 4 (75% job-mix)

-0.1
0.1
0.3
0.5
0.7
0.9
1.1

1 20 39 58 77 96 115

Jobs

No
rm

al
iz

ed
 D

is
ta

nc
e

Mean = 0.01
Std. Dev. = .008

Figure 5.13 Comparison of completion for malleable data set 4 (75% job-mix)

116

www.manaraa.com

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1 20 39 58 77 96 115

Jobs

No
rm

al
iz

ed
 D

is
ta

nc
e

Mean = 0.02
Std. Dev. = .013

Figure 5.14 Comparison of start time of for malleable data set 5 (100% job-mix)

-0.1
0.1
0.3
0.5
0.7
0.9
1.1

1 20 39 58 77 96 115

Jobs

No
rm

al
iz

ed
 D

is
ta

nc
e

Mean = 0.02
Std. Dev. = .02

Figure 5.15 Comparison of completion for malleable data set 5 (100% job-mix)

Table 5.5 shows the mean and standard deviation of de(Ts) and de(Tc) for all

workloads. It can be seen from the table, that the mean and standard deviation is less than

0.02 for all data sets, except for data set 2. Table 5.6, Figures 5.16 and 5.17 show the

comparison of utilization and average turn around time for rigid data set and malleable

117

www.manaraa.com

data sets. It can be seen from the table that the simulator output matches closely with

actual data. Figure 5.18 shows the trend in variation of utilization with variation of

percentage of malleable jobs in workload. The trend is similar in simulator and real

system. In both case the utilization is about 0.873 for rigid workloads. The utilization

increases as percentage of malleable job increases and reaches a saturation point of about

0.984 for 33 % malleable jobs in both cases. After the saturation point the utilization

increases about 1 and 1.5 percent for simulator and real system respectively for all

malleable jobs. Figure 5.19 shows the trend in variation of average turn around time with

variation of percentage of malleable jobs in workload. The trend is similar in simulator

and real system. The turn around time decreases as percentage of malleable job increases

and reaches to a saturation point for 33 % malleable jobs in both cases. After the

saturation point the turn around time do not change significantly as the percentage of

malleable job increases.

Table 5.5 Mean and standard deviation of distance of start time and completion time

Data de(Ts) de(Tc)
Set Mean Std. Dev. Mean Std. Dev
1 0.0007 0.002 0.001 0.003
2 0.036 0.025 0.042 0.049
3 0.017 0.09 0.016 0.025
4 0.009 0.007 0.01 0.008
5 0.022 0.013 0.024 0.023

118

www.manaraa.com

No
rm

al
iz

ed
 D

is
ta

nc
e

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
-0.1

1 2 3 4 5 6

Data Sets

Figure 5.16 Comparison of utilization between simulator output and real system for data
sets 1-5

Table 5.6 Comparison of utilization and average turn around time between simulator
output and real system

%of
Job
Mix

Utilization Turn Around Time
Real Simulator Normalized

Distance
Real
System

Simula
tor

Normalized
Distance

0 0.873344 0.87367 0.000373 1968.53 1997.89 0.014915
10 0.908738 0.90933 0.000652 1849.26 1863.08 0.007473
33 0.983825 0.98461 0.000798 1674.6 1680.89 0.003756
50 0.984702 0.98407 0.000642 1641.47 1666.1 0.015005
75 0.991332 0.9904 0.00094 1657.91 1684.91 0.016286
100 1.000000 0.9945 0.00550 1657.45 1701.91 0.026824

119

www.manaraa.com

Comparison of Avg. TAT

No
rm

al
iz

ed
 D

is
ta

nc
e 1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
-0.1

1 2 3 4 5 6

Data Sets

Figure 5.17 Comparison of average turn around time between simulator output and real
system for data sets 1-5

Utilization (Real System) Utilization (Simulator)

11

0.95 0.95

0 10 20 30 40 50 60 70 80 90 100

Percentage of Job Mix

0 10 20 30 40 50 60 70 80 90 100

Percentage of Malleable Jobs

Ut
ili

z a
tio

 n 0.9

0.85

0.8 Ut
ili

z a
tio

n 0.9

0.85

0.8

0.75 0.75
0.7 0.7

(a) (b)

Figure 5.18 Comparison of utilization between simulator and prototype

 120

www.manaraa.com

Average Turn Arround Time (Real System) Average Turn Arround Time (Simulator)

2200 2200
Av

g
TA

T
in

 S
ec

on
ds

2000

1800

1600

1400

1200

1000
0 10 20 30 40 50 60 70 80 90 100

Percentage of Malleable Job

Av
g

TA
T

in
 S

ec
on

ds

2000

1800

1600

1400

1200

1000
0 10 20 30 40 50 60 70 80 90 100

Percentage of Malleable Jobs

(a) (b)

Figure 5.19 Comparison of average turn around time between simulator and prototype

Table 5.7 and figure 5.20 shows the trend in utilization and average turn around

time for synthetic malleable workloads presented in table 5.3. From the table and the

figure it can be seen that the trends in utilization and average turn around time for the

synthetic malleable workloads is similar to those of real system. For all rigid jobs the

utilization is about 0.87 which increases with the increase of percentage of malleable jobs

and reaches to a saturation point of 0.99 for 335 malleable jobs. The utilization does vary

significantly after that point. Similar behavior can be observed in case of average turn

around time.

121

www.manaraa.com

0.7

0.8

0.9

1

Ut
ili

za
tio

n

20000

22000

24000

26000

28000

30000

32000

Av
g

TA
T

(S
 ec

s.
)

0 100 0 10 20 30 40 50 60 70 80 90 100
Percentage of malleable jobs Percentage of Malleable Jobs

(a) Utilization (b) Average Turn Around Time

Figure 5.20 Variation of utilization and average turn around time with the variation of
percentage of malleable job for 1200 Synthetic workloads

Table 5.7 Trend in utilization and average turn around time for synthetic workload

% of job Mix Utilization Average Turn
Around Time
(secs.)

0 0.874 30850
10 0.946 28088
33 0.995 26112
50 0.996 26026
75 0.998 25938
100 0.997 25938

5.4 Summary

From the results presented in section 5.3 it can be seen that the start time and

completion for jobs from simulator output closely match with those of simulator outputs

for both rigid and malleable workloads. In case of start time the variation is more than 10

percent for one job out 720 jobs. For completion time 10 jobs out of 720 has more than

10 % variation. As explained in section 5.3.2 the reason for these exceptions are

unpredictable system variance, variation in negotiation cost, and adaptation cost in real
122

www.manaraa.com

system. However, the difference in mean and standard deviation of distance between

simulator and real system is very low (less than 0.02).

For all workload the distance between simulator and real system for both

utilization and average turn around time is very low. Moreover the trend in variation of

utilization and average turn around time with the variation of percentage of malleable

jobs is similar. Also from the results of experiments with synthetic load it can be

observed that the trends in variation of utilization and turn around time are similar to

those of the real system, which signifies that the simulator scales properly. From these

results it can be concluded that the simulator faithfully approximates a real system.

123

www.manaraa.com

CHAPTER VI

EXPERIMENTAL RESULTS

In Chapter IV the design and implementation of a simulator for adaptive parallel

system has been presented. The validation of the simulator has been discussed in Chapter

V. In this chapter, the design, results and analysis of the simulation experiments to

investigate the impact of system parameters on performance that were conducted using

the validated simulator have been presented. Section 6.1 discussed the design of the

experimental setup. A discussion on the dataset that were used for the simulation

experiment is presented in section 6.2. The experimental results are discussed in sections

6.3 to 6.6 and finally a summary is presented in section 6.7.

6.1 Experimental Design

The overall purpose of simulation experiments is to determine how the model

parameters impact application and system performance in an adaptive parallel system. To

achieve this goal a set of model parameter to study must be determined as well as how

these parameters will be varied during the simulation experiments and the range of values

of these parameters.

124

www.manaraa.com

An adaptive parallel system consists of an adaptive RMS and a malleable

workload. A malleable workload contains rigid as well as malleable jobs and the

flexibility of malleable jobs can vary from workload to workload. So it has been decided

that impact of the number of malleable jobs in the workload and the flexibility of the

malleable jobs would be the parameter to be investigated. The execution of malleable

jobs consists of phases and jobs adapt at a phase boundary by shrinking or expanding.

The phase change of a malleable job involves negotiation with the RMS and

reconfiguration of the job to utilize a new set of processor. As a result it has been decided

to investigate the impact of negotiation and adaptation on performance.

The impact of the following parameters on system and application performance

has been investigated through simulation experiments. 1) The number of malleable jobs

in the workload, 2) flexibility of malleable jobs, 3) cost of negotiation, and 4) cost of

adaptation of malleable jobs. To determine the impact of a parameter during the

simulation experiments the value of the parameter has been varied while other parameters

have been kept constant. For example to measure the impact of number of malleable jobs

on performance, the number of malleable jobs in the workload has been varied, while the

flexibility of malleable jobs, the cost of negotiation, and cost of adaptation have been

kept constant. Then for each variation of number of malleable jobs, simulation

experiments have been conducted by varying the cost of negotiation. In this manner one

by one all the parameters have been varied while the rest of the parameters has been kept

125

www.manaraa.com

constant. The experiments have been designed this way to isolate the impact of one

parameter on performance. For each simulation run with a workload the following

statistics has been collected: system utilization, average turn around time, average wait

time, average execution time, total number of negotiation and total number of adaptation.

The range of values of the parameters that have been selected for the simulation

experiments are as follows:

Number of malleable jobs: The number of malleable jobs in a workload has been

has been selected as percentage of total number of jobs in the workload. The number of

malleable jobs has been varied from 10% to 100% in steps of 10.

Flexibility of Malleable jobs: The flexibility of malleable jobs in the workload has

been varied in two ways. In one approach the minimum number of processors has been

kept constant while the maximum number of processors has been varied. This has been

done to measure impact of flexibility on performance. Experiments have been conducted

with following values of flexibility range: 2-16, 2-32, 2-64, 2-80, 2-96, 2-112, and 2-128.

In the second approach the flexibility has been kept constant while the minimum number

processors of the range have been varied. This has been done to determine the impact of

the values of the minimum processor on performance for same flexibility. Experiments

have been conducted with following values of flexibility range: 4-130, 8-134, 12-138,

and 16-142.

126

www.manaraa.com

Negotiation Cost: Experiments have been conducted with the following values of

negotiation costs: 0.0015 second, 0.003 second, 0.006 second, 0.006 second, 0.0012

second, 0.012 second, 0.024 second, 0.048 second, 0.96 second, 0.2 second, 0.4 second,

0.8 second, 2 seconds, 4 second and 8 seconds. From the experiments with the prototype

system in 16 processor dedicated cluster, it has been found that the average negotiation

cost is 0.0015 seconds on average. In the experiments all negotiations were two round

negotiations and applications responded to a negotiation without delay. For this reason

0.0015 second has been selected as the lower limit of the negotiation cost. The other

values of the negotiation cost have been selected by doubling the previous values. The

upper limit of the negotiation cost has been selected as 8 seconds, which is 5333 times

larger than the lower limit. It has been assumed that this is large enough value that may

occur in a real system.

Adaptation Cost: Experiment have been conducted with the following values of

adaptation costs: 0.002 second, 0.004 second, 0.008 second, 0.01 second, 0.02 second,

0.04 second, 0.08 second, 0.2 second, 0.4 second, 0.8 second, 1 second, 2 seconds, 4

seconds, and 8 seconds. Like the negotiation cost the lower limit of the adaptation cost

has been selected as the adaptation cost measured in the prototype system and the upper

limit has been selected as 4000 times larger than the lower limit.

127

www.manaraa.com

6.2 Experimental Data

As explained in Chapter III (sub section 3.4.3) for this research, a workload model

has been developed by extending Downy’s model. Synthetic data for the simulation

experiments has been generated using this model. To generate a workload the model

takes the following parameters as input: 1) number of jobs in the workload, 2) the

minimum execution time and maximum execution time of the jobs, 3) the range of the

default processors, 4) the number of malleable jobs in the workload, and 5) the flexibility

range (minimum and maximum number of processors) of malleable jobs. Each job in a

workload generated by the model contains the following information.

1. Arrival time of the job

2. Type of the jobs (Rigid/Malleable)

3. Number of processors required.

4. Execution time of the job on the required number of processors.

5. Flexibility range (for malleable jobs)

A workload with all rigid jobs has been generated with 1000 jobs. The minimum

run time and maximum run time has been fixed to 100 second and 3600 seconds

respectively, and default processor range has been fixed to 16-128 processors. The rigid

workload has been used as the baseline workload. Several malleable workloads have

been generated from the base line workload by varying the flexibility range and number

of malleable jobs with in the range mention in section 6.1.

128

www.manaraa.com

There are two justifications for selecting the size of the workload as 1000 jobs. In

most super computer centers on average about 200 jobs are submitted in a day in one

cluster [65]. Workloads with 1000 jobs have been selected to simulate about five days of

workload of a cluster in a typical super computer center, which seems reasonable.

Simulation experiments with larger workload size of 1000 jobs, 3000 jobs and 5000 jobs

have been conducted. Table 6.1 and figure 6.1 show the result of these experiments. It

has been found that increasing the workload size do not impact the performance in any

significant way. Increasing workload size would increase the simulation time, data file

size and result processing time.

Table 6.1 Utilization for workload size 1000 jobs, 3000 jobs and 5000 jobs.

% of
Malleable
Job

Utilization

1000 3000 5000
0 0.84381 0.84693 0.84489

10 0.92574 0.92725 0.92658
20 0.99747 0.99286 0.99134
30 0.9993 0.99969 0.9997
40 0.99873 0.99973 0.99989
50 0.9998 0.9996 0.99955
60 0.9998 0.9999 0.99994
70 0.99849 0.9994 0.99989
80 0.99874 0.99924 0.99988
90 0.99979 0.99955 0.99977

100 0.99974 0.99988 0.99978

129

www.manaraa.com

Utilization as function of number of Malleable jobs

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

% of Malleable Jobs

Ut
ili

za
tio

n

1000
3000
5000

Figure 6.1 Utilization for workload size 1000 jobs, 3000 jobs and 5000 jobs.

6.3 Performance with the Variation of Number of Malleable Jobs in Workload

To investigate the impact of number of malleable jobs in the workload on

performance, simulation experiments with all rigid workload, and workloads containing

different percentage of malleable jobs have been conducted. The rigid workload is used

as baseline to compare performance with malleable workloads. Each workload is

simulated twice, once on a cluster with 256 nodes and the second time on a cluster with

512 nodes. Table 6.2 shows the variation of performance as the percentage of malleable

jobs increases in the workload. Figure 6.2 and 6.3 graphically shows the information

presented in Table 6.2. From the results presented in table 6.2 and figure 6.2 it can be

seen that the system utilization increases as the number of malleable jobs in the workload

130

www.manaraa.com

Utilization as Function of Job Mix
(1000 Jobs)

Ut
ili

za
tio

n

1

0.95

0.9

0.85

0.8
0 10 20 30 40 50 60 70 80 90 100

% of Malleable Jobs

(a) Cluster Size: 256 Nodes

increases. The utilization saturates at one point and it does not vary significantly after the

saturation.

Table 6.2 Variation of performance with change in number of malleable jobs in the
workload. Negotiation cost: 1.5 ms, adaptation cost: 2 ms.

% of Malleable
jobs

Cluster Size : 256 Nodes Cluster Size: 512 Nodes
Utilization Avg. TAT

(Secs)
Utilization Avg. TAT

(Secs)
0 0.84381 109741 0.91165 47580
10 0.92574 101443 0.98121 44222
20 0.99747 93002 0.99186 42997
30 0.99930 92724 0.99112 43387
40 0.99873 91822 0.99447 42441
50 0.99980 91913 0.99178 42601
60 0.99980 91607 0.99860 42293
70 0.99849 89184 0.98803 40295
80 0.99879 88069 0.99327 38929
90 0.99979 89398 0.99488 38909
100 0.99974 86115 0.99629 38235

131

www.manaraa.com

Utilization as Function of Job Mix
(1000 Jobs)

0.8

0.85

0.9

0.95

1

Ut
ili

za
tio

n

0 10 20 30 40 50 60 70 80 90 100

% of Malleable Jobs

(b) Cluster size 512 nodes

Figure 6.2 Variation of utilization with the number of malleable jobs in the workload.
Negotiation cost: 1.5 ms, adaptation cost: 2 ms

The utilization at saturation is above 99%, which indicates that the cluster is fully

utilized after saturation. The saturation occurs at 20% job mix. The improvement in

utilization over all rigid workload is about 15% in a 256 node cluster and 8% in a 512

node cluster. From the results it can be seen that the improvement over the same rigid

workload may vary from cluster to cluster. The most important finding of these

experiments is that irrespective of cluster size or base line utilization with all rigid

workload, it is possible to achieve maximum utilization with a malleable workload. The

maximum possible utilization can be achieved with relatively few malleable jobs (20% in

our experiments).

132

www.manaraa.com

In this research we are interested in the gap between the performance of an all

rigid workload and the maximum achievable performance. We want to investigate what

parameters of a workload and RMS impact this difference and how these parameters

impact the performance.

Table 6.2 and Figure 6.3 present the impact of malleable jobs on average turn

around time. From the results it can be seen that the average turn around time decreases

as the number of malleable jobs in the workload increases. The decrease is initially high

and gradually the decrease becomes low as the number of malleable job increases further.

Unlike utilization no saturation can be observed in case of average turn around time. For

a 256 node cluster, the average turn around time improves about 15% for a 20% job mix,

while the improvement was about 10% for a 512 node cluster. For all malleable jobs the

improvement was 27% for 256 nodes cluster and 24 % for 512 nodes cluster.

The improvement in performance in the presence of malleable jobs in the

workload comes at the expense of the execution time of the malleable jobs. In malleable

mode, the execution time of a job increases in general. Since the scheduler has to shrink a

malleable job to accommodate the pending jobs, on average, a job runs on a lower

number of processors in malleable mode than it does in rigid mode. The graph of figure

6.4 shows the average execution time, the average turn around time, and the average wait

time as function of number of malleable jobs in the workload. From the figure it can be

seen that as the number of malleable jobs increases, the job execution time increases on

133

www.manaraa.com

Avg. TAT as Function of Job Mix (1000 Jobs)

Av
g.

 T
AT

 (S
ec

on
s)

Av

g.
 T

AT
 (S

ec
on

s)

108000

104000

100000

96000

92000

88000

84000

80000
0 10 20 30 40 50 60 70 80 90 100

% of Malleable Jobs

(a) Cluster Size: 256 Nodes

Avg. TAT as Function of Job Mix (1000 Jobs)

47000

43000

39000

35000
0 10 20 30 40 50 60 70 80 90 100

% of Malleable Jobs

(b) Cluster Size: 256 Nodes

Figure 6.3 Variation of average turn around time with the number of malleable jobs for
data set 1. Negotiation cost: 1.5 ms, adaptation cost: 2 ms

average. However, as the number of malleable job increases, the average turn around

time decreases. This is because with higher number of malleable jobs, a job has to wait

less in the pending queue.

 134

www.manaraa.com

Variation of Avg. Wait, TAT and Execution Time

0

20000

40000

60000

80000

100000

0 10 20 30 40 50 60 70 80 90 100 110

% of Malleable Job

Ti
m

e
(S

ec
s.

)

Ave. Wait
Avg. TAT
Aveg. Exec.

Figure 6.4 Variation of average execution, wait, and turn around time as the number of
malleable jobs increases. Flexibility range: 2- 128, negotiation cost: 1.5ms,
adaptation cost: 2ms, cluster size: 256 nodes.

6.4 Performance with the Variation of Flexibility of Malleable Jobs

To measure impact of flexibility of malleable jobs on performance, two sets of

experiments were conducted. In the first set of experiments, the minimum number of

processors was varied keeping the flexibility (difference between the maximum and

minimum number of processors) constant. The goal was to investigate the impact of the

minimum number of processors on performance for constant flexibility. For example if

there are two malleable workloads, one has malleable jobs with flexibility range 10 - 30

processor, and other has malleable jobs with flexibility range 20 -40 processors. The

malleable jobs in both workloads have flexibility of 20 processors, but in one the

135

www.manaraa.com

minimum number of processors is 10 and in the other it is 20. The goal of these

experiments is to determine if the performance of these two workloads is different?

In the second set of experiments the minimum number of processors was kept

constant and the flexibility was varied by changing the maximum number of processors.

The goal of these experiments was to measure the impact of variation of flexibility on

performance while the minimum number of processors is constant. The two sets of

experiments were conducted with 256 nodes cluster.

Table 6.3 shows the minimum processors for first set of experiments. Table 6.4

presents the impact of minimum number processors of malleable jobs on performance for

constant flexibility.

Table 6.3 Flexibility range for experiment set one

Minimum
Processor

Maximum
Processors

Flexibility

2 128 126
4 130 126
8 134 126

12 134 126
16 134 126

136

www.manaraa.com

Table 6.4 Impact of minimum number of processor on performance. Flexibility: 126
processors, negotiation cost: 1.5 ms, adaptation cost: 2ms.

Min. Utilization Average Turn Around Time (secs)
Proc. 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

2 0.93 0.997 0.999 0.999 0.999 101443 93002 92724 91822 91913
4 0.92 0.993 0.999 0.999 0.999 101744 93733 92739 92330 92231
8 0.92 0.982 0.997 0.999 0.999 102379 94956 93043 92599 92526

12 0.91 0.973 0.991 0.999 0.995 102688 95712 93537 92742 93050
16 0.90 0.965 0.983 0.998 0.993 103083 96507 94111 92804 93188

The results of table 6.4 are presented graphically in Figure 6.5 and Figure 6.6.

From the results it can seen that utilization decreases as the number of minimum

processors of malleable jobs increases, while the percentage of malleable jobs in the

workload is kept constant. The variation of utilization is more pronounced for 10% and

20% job mixes. For job mixes above 40%, the utilization is relatively unaffected by the

number of minimum processors of malleable jobs. From figure 6.6 similar trends can be

observed in case of average turn around time.

137

www.manaraa.com

Utilization as Function of Minimum Processors
(flexibility: 126 processors)

0.89

0.91

0.93

0.95

0.97

0.99

1.01

0 4 8 12 16

Minumum Processors

Ut
ili

za
tio

n

10%
20%
30%
40%
50%

Figure 6.5 Variation of utilization with minimum number of processor on performance
for data set 1. Flexibility: 126 processors, negotiation cost: 1.5 ms,
adaptation cost: 2ms.

The reason for this behavior is that with a lower minimum processor requirement,

the scheduler has a higher probability of scheduling a pending malleable job. For

example, consider the scenario that there are 2 idle processors, all the running jobs are

either rigid and/or malleable running on minimum processors, and the job at the head of

the pending list is malleable. In such case, if the flexibility range of the pending

malleable job is 2-6, it could be started immediately, but if the flexibility range is 4-8, the

job cannot be started. It has to wait till a running job exits and releases at least 2 or more

processors making the number of idle processors 4 or more. As the number of malleable

jobs increases, the probability of a malleable job running on more than its minimum

138

www.manaraa.com

processors increases, which in turn increases the probability of releasing 2 processors by

shrinking running malleable to start the pending malleable jobs.

In case of workloads with a low number of malleable jobs, at any particular time

there are more rigid jobs running and waiting, compared to malleable jobs. In this

situation to utilize any idle processor by scheduling a pending rigid job, the scheduler

needs to preempt required number of processor by shrinking running malleable jobs.

Since there are few malleable jobs running, if the lower bound of the flexibility range is

high, the scheduler has less opportunity of preempting required number of processors,

compared to the situation when the lower bound is low. As a result for workloads with

low number of malleable jobs, the utilization decreases as the lower bound of flexibility

range of malleable job increases. However, as the number of malleable jobs in the

workload increases, the number of running malleable job also increases. In this situation

the scheduler has higher probability of preempting required number of processors to

accommodate the pending job, and thereby utilizing the idle processor. As a result the

lower bound of flexibility range of malleable jobs doesn’t have any significant impact on

performance when the workload contains a high number of malleable jobs.

139

www.manaraa.com

Avg. TAT as function of Minimum Processors (Flexibility:
126 processors

90000

92000

94000

96000

98000

100000

102000

104000

0 4 8 12 16

Minimum Processors

A
vg

. T
A

T
(s

ec
s)

10%
20%
30%
40%
50%

Figure 6.6 Variation of avg. TAT with minimum number of processor on performance
for data set 1. Flexibility: 126 processors, negotiation cost: 1.5 ms,
adaptation cost: 2ms.

Experimental result presented in Tables 6.5 and 6.6 show the impact of flexibility

on performance, for constant minimum number of processors. Figures 6.7, 6.8 and 6.9

present the results of Tables 6.5 and 6.6 graphically. Figure 6.7 shows the utilization as

function of percentage of malleable jobs in the workload for different flexibility. Figure

6.8 shows utilization as function of flexibility for different job mix. From the results

presented in Figure 6.7 it can be seen that the utilization increases and saturate at 20% job

mix. The utilization at the saturation point increases as the flexibility increases. The

utilization at the saturation point reaches the maximum possible at a flexibility of 62

processors. Figure 6.8 (showing the same result in a different way) clearly demonstrates

140

www.manaraa.com

that, for a given job mix, the utilization improves and reaches a saturation point at a

certain flexibility. Increasing flexibility further does not improve the utilization.

The reason for this behavior is that at lower flexibility, the running malleable can

release fewer processors compared to higher flexibility. As a result the probability of

accommodating a pending job to utilize idle processors becomes low at lower flexibility.

As the flexibility increases the running malleable jobs can release more processors and

they can also expand more to utilize idle processors.

From the result presented in Table 6.6 and Figure 6.9 it can be seen that the

change in flexibility does not impact the average turn around time in any significant way.

For a low minimum number of processors (2 in these experiments), only the number of

malleable jobs in the workload impacts the average turn around time.

Table 6.5 Impact of flexibility of malleable job on utilization. Minimum processors: 2
negotiation cost: 1.5 ms, adaptation cost: 2ms.

%of
Malleable
Jobs

Utilization
14
(2-16)

30
(2-32)

46
(2-48)

62
(2-64)

78
(2-80)

94
(2-96)

110
(2-112)

126
(2-128)

10 0.86461 0.90117 0.91404 0.91949 0.92277 0.92494 0.92574 0.92574
20 0.92978 0.97413 0.98862 0.99095 0.99454 0.99745 0.99683 0.99747
30 0.94403 0.97482 0.98663 0.99048 0.99409 0.99677 0.99813 0.9993
40 0.94996 0.97972 0.98922 0.9941 0.9985 0.99813 0.99824 0.99873
50 0.94501 0.97416 0.9877 0.99301 0.99636 0.99802 0.99976 0.9998
60 0.9504 0.98193 0.9912 0.99749 0.99825 0.99873 0.9994 0.9998
70 0.94572 0.98252 0.98595 0.98888 0.99312 0.99574 0.99723 0.99849
80 0.94963 0.97515 0.98865 0.99431 0.99825 0.99858 0.9984 0.99874
90 0.94424 0.97468 0.98505 0.99232 0.99708 0.99821 0.99948 0.99979

100 0.9555 0.98035 0.98943 0.99612 0.99893 0.99856 0.99935 0.99974

141

www.manaraa.com

Variation of Utilization with Number of Malleable Jobs in
the Workload

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

1.01

0 10 20 30 40 50 60 70 80 90 100 110

% of Malleable Jobs

Ut
ili

za
tio

n

14
30
46
62
78
94
110
126

Figure 6.7 Variation of utilization as the number of malleable jobs changes in the
workload for different flexibility. Minimum processors: 2, negotiation cost:
1.5 ms, adaptation cost: 2ms.

142

www.manaraa.com

Variation of Utilization with Fexibility of Malleable Jobs

0.85
0.87
0.89
0.91
0.93
0.95
0.97
0.99
1.01

0 20 40 60 80 100 120 140

Flexibilty

Ut
ili

za
tio

n

10%
20
30
100%

Figure 6.8 Variation of utilization with flexibility for different job mix. Minimum
processors: 2, negotiation cost: 1.5 ms, adaptation cost: 2ms

Table 6.6 Impact of flexibility of malleable job on avg. TAT. Minimum processors: 2
negotiation cost: 1.5 ms, adaptation cost: 2ms.

%of
Malleable
Jobs

Average Turn Around Time (Seconds)
14

(2-16)
30

(2-32)
46

(2-48)
62

(2-64)
78

(2-80)
94

(2-96)
110

(2-112)
126

(2-128)
10 102390 101677 101409 101487 101463 101444 101443 101443
20 93540 92894 92898 92919 92900 92917 93008 93002
30 92640 92701 92699 92698 92717 92726 92719 92724
40 91831 91748 91843 91797 91788 91813 91813 91822
50 91965 91893 91885 91914 91872 91911 91915 91913
60 91400 91590 91423 91385 91458 91442 91553 91607
70 88826 89074 89240 89422 89177 89150 89306 89184
80 88184 88360 88256 87996 88074 88262 88015 88069
90 89063 89088 89546 88863 88814 89248 89224 89398

100 86293 86160 86136 86124 86125 86122 86118 86115

143

www.manaraa.com

Impact of Flexibility on Avg. TAT for Fixed Minimum
processor

84000

88000

92000

96000

100000

104000

0 20 40 60 80 100 120 140

Flexibilty (processors)

Av
g.

 T
AT

 (S
ec

s)

10%
20
30
100%

Figure 6.9 Impact of flexibility of malleable jobs on utilization. Minimum processors:
2, negotiation cost: 1.5 ms, adaptation cost: 2ms.

6.5 Performance with the Variation of Negotiation Cost

To investigate the impact of negotiation cost on performance, simulation

experiments were conducted by varying the negotiation cost while keeping the adaptation

cost constant. The adaptation cost per processor was fixed to 2 milliseconds. The

negotiation cost was varied from 1.5 milliseconds to 8 seconds. Table 6.7 shows the

impact of negotiation cost on utilization. Figures 6.10 and 6.11 graphically show the

impact of negotiation cost on utilization. From Table 6.7 and Figure 6.10 it can be seen

that the negotiation costs up to 0.8 second do not have any significant effect on

utilization. As the negotiation cost increases further, the utilization decreases as the

144

www.manaraa.com

number of malleable increases and after a point then the utilization starts increasing again

as the number of malleable job increases further. Figure 6.11 shows variation of

utilization as the negotiation cost increases for different job mixes. From the Figure 6.11

and Table 6.7, it can be seen that for job mixes 10% and 100% the negotiation cost has no

significant effect. For the other job mixes, the utilization decreases as the negotiation cost

increases. The impact of negotiation cost is most profound in job mixes between the

range 40%-60%. From Table 6.8 and Figures 6.12 and 6.13 similar trends can be

observed for average turn around time. Table 6.9 shows the decrease in utilization and

average turn around time for increasing negotiation cost from 1.5 milliseconds to 8

seconds.

The reason for this behavior is that as the number of malleable jobs in the

workload increases the number of negotiation increases and reaches a maximum at a

certain job mix. If the number of malleable jobs in the workload increases further the

number of negotiation decreases and reaches a minimum at 100% malleable jobs. Table

6.10 show the variation in the number of negotiations as the percentage of malleable jobs

varies. Figure 6.14 presents the result graphically. When percentage of malleable job in

the workload is low the need for negotiation is high, as there are many rigid jobs waiting

in the pending queue. Because there are very few malleable jobs running, the scope of

negotiation is low. As a result the number of negotiations is low. As the number of

malleable jobs in the workload increases, the number of running malleable jobs also

145

www.manaraa.com

increases. Consequently, the number of negotiation increases. However, as the number of

malleable jobs in the workload increases further, there are more malleable jobs in the

pending queue compared to rigid jobs. Because of it flexibility, a pending malleable job

can be scheduled for execution as long as the number the idle processors is equal or more

than the minimum processors requirement for the job. For this reason as the number of

malleable job in the pending queue increases the need for negotiation also decreases.

Table 6.7 Impact of negotiation cost on utilization

Neg.
Cost
(secs.)

Utilization

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0.0015 0.92574 0.99747 0.9993 0.99873 0.9998 0.9998 0.99849 0.99874 0.99979 0.99974
0.003 0.92574 0.99739 0.9993 0.99873 0.99979 0.99879 0.99849 0.99873 0.99979 0.99974
0.006 0.92573 0.99738 0.99928 0.99949 0.99978 0.99983 0.999848 0.99873 0.99978 0.99974
0.012 0.92573 0.99746 0.99926 0.99869 0.99976 0.99978 0.99846 0.99871 0.99977 0.99974
0.024 0.92574 0.99739 0.99927 0.99866 0.99973 0.99974 0.99842 0.99868 0.99976 0.99974
0.048 0.92571 0.99738 0.99923 0.99849 0.99964 0.99968 0.99817 0.99864 0.9993 0.99973
0.096 0.92569 0.99725 0.99913 0.99862 0.99948 0.99948 0.9982 0.99537 0.99924 0.99972

0.2 0.92564 0.99704 0.99866 0.99662 0.99866 0.99874 0.99758 0.99825 0.99951 0.9997
0.4 0.92554 0.996 0.99697 0.99679 0.99729 0.99669 0.9968 0.997 0.99903 0.99965
0.8 0.92512 0.99553 0.99642 0.9929 0.99527 0.99544 0.99472 0.99074 0.99729 0.99956

2 0.92433 0.99307 0.99279 0.98726 0.98848 0.98816 0.9877 0.99096 0.99528 0.99923
4 0.9221 0.9864 0.9816 0.97445 0.96888 0.97615 0.97734 0.98686 0.98974 0.99875
8 0.92051 0.97961 0.96659 0.94554 0.94841 0.94637 0.95367 0.96609 0.96609 0.9967

146

www.manaraa.com

Figure 6.10 Impact of negotiation cost on utilization. Flexibility range: 2- 128,
adaptation cost: 2ms

Utilization as Function of Job Mix

0.9

0.92

0.94

0.96

0.98

1

1.02

0 10 20 30 40 50 60 70 80 90 100

% of Malleable Jobs

U
til

iz
at

io
n

8 Secs.
4 Secs
2 Secs.
.0015 Secs
0.8 Secs

Figure 6.11 Impact of negotiation cost on utilization. Flexibility range: 2- 128,
adaptation cost: 2ms

Utilization as function of Negotiation Cost

0.9

0.92

0.94

0.96

0.98

1

1.02

0 1 2 3 4 5 6 7 8 9

Negotiation Cost (Seconds)

Ut
ili

za
tio

n

10% 20% 60% 100%

 147

www.manaraa.com

Table 6.8 Impact of negotiation cost on average turn around time

Neg Cost
(Secs.)

Average Turn Around Time (Seconds)
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.0015 101443 93002 92724 91822 91913 91607 89184 88069 89398 86115
0.003 101443 93003 92725 91822 91914 91608 89185 88070 89398 86115
0.006 101443 93003 92725 91817 91915 91554 89186 88071 89399 86115
0.012 101444 93005 92726 91843 91917 91590 89187 88073 89399 86115
0.024 101445 93006 92742 91829 91918 91592 89192 88077 89401 86115
0.048 101446 93007 92747 91852 91913 91523 89345 88090 89327 86115
0.096 101447 92977 92740 91829 91959 91567 89385 88144 89332 86115

0.2 101452 93061 92758 92078 92060 91549 89384 88424 89420 86115
0.4 101461 93083 92939 91933 92117 91827 89448 88372 89363 86116
0.8 101485 93156 92856 92477 92342 91915 89595 88570 89396 86117

2 101581 93367 93278 92846 93026 92776 90359 88679 90057 86159
4 101710 93921 94559 94777 94821 94181 90910 89306 90387 86144
8 101902 94691 95637 97250 97339 96759 93732 92122 90857 86374

Avg. TAT as Function of Job Mix

84000
86000
88000
90000
92000
94000
96000
98000

100000
102000
104000

0 10 20 30 40 50 60 70 80 90 100

% of Malleable Jobs

Av
g.

 T
AT

 (S
ec

s)

1.5 ms

2 Sec.

4 Sec.

8 Sec.

0.8 Secs

Figure 6.12 Impact of negotiation cost on avg. TAT. Flexibility range: 2- 128,
adaptation cost: 2ms

148

www.manaraa.com

Avg. TAT as Function of Negotiation Cost

84000
86000
88000
90000
92000
94000
96000
98000

100000
102000
104000

0 1 2 3 4 5 6 7 8 9

Negotiation Cost (Secs.)

Av
g.

 T
AT

 (S
ec

s.
)

10%
20%
60%
100%

Figure 6.13 Impact of negotiation cost on avg. TAT. Flexibility range: 2- 128,
adaptation cost: 2ms

Table 6.9 Decrease in performance as negotiation cost increased from 1.5 ms to 8
seconds

% of Mal. Jobs 10 20 30 40 50 60 70 80 90 100
% Decrease in Utilization 0.52 1.79 3.27 5.32 5.14 5.34 4.48 3.27 3.37 0.30
% Decrease in avg.TAT 0.45 1.82 3.14 5.91 5.90 5.62 5.10 4.60 1.63 0.30

149

www.manaraa.com

Variation of Negotiation with Number of Malleable Jobs

No
. o

f N
eg

ot
ia

tio
ns

7000

6000

5000

4000

3000

2000

1000

0
0 10 20 30 40 50 60 70 80 90 100

% of Malleable Jobs

Figure 6.14 Variation of number of negotiation with the variation of percentage of
malleable jobs in the workload

Table 6.10 Variation of number of negotiation with the variation of number of malleable
jobs in the workload

% of Malleable Number of
Jobs Negotiation

10 599
20 1699
30 2750
40 3709
50 4072
60 6090
70 6106
80 4636
90 2882

100 306

150

www.manaraa.com

6.6 Performance with the Variation of Adaptation Cost

To investigate the impact of adaptation cost on performance, simulation

experiments were conducted by varying the adaptation cost while keeping the negotiation

cost constant. The negotiation cost was fixed at 1.5 milliseconds. The adaptation cost was

varied from 2 milliseconds to 8 seconds. Table 6.11 shows the impact of adaptation cost

on utilization. Figures 6.15, 6.16 and 6.17 graphically show the impact of adaptation cost

on utilization. From the simulation results it can be seen that for adaptation costs up to

0.2 second, the utilization does not vary significantly for any job mixes. For 10% job

mixes the adaptation cost does not effect utilization up to 1 second. For 100% job mixes

the adaptation cost doesn’t effect utilization up to 0.4 second. In general as the adaptation

cost increases beyond 0.2 seconds the utilization decreases. The impact of adaptation cost

is more profound on job mixes between 70% - 90%. From Table 6.11 and figure 6.15 it

can be seen that for adaptation costs beyond 2 seconds, as the number of malleable jobs

increases, the utilization increases initially but then it decreases. As number of malleable

jobs further increases the utilization increases again. The reason for this behavior is that

as the number of malleable jobs in the workload increases the number of negotiation

increases, and consequently the number of adaptation increases and reaches a maximum

at certain job mix. If the number of malleable jobs in the workload increases further the

number of adaptation decreases and reaches a minimum at 100% malleable jobs. Table

6.14 show the variation of number of adaptation as the percentage of malleable job

151

www.manaraa.com

varies. From Figures 6.16 and 6.17 it can be seen that for all job mixes as the adaptation

cost increases the utilization decreases more or less linearly. A job mix 80% shows

highest decrease.

Table 6.12 and Figures 6.18, 6.19 and 6.20 show the impact of adaptation cost on

average turn around time. The adaptation cost has no significant impact on average turn

around time for job mixes 10% and 100%. For other job mixes trends similar to those

seen in utilization can be observed. For all job mixes, the impact of adaptation cost on

average turn around time is much less compared to the impact on utilization.

Table 6.13 shows the decrease in utilization and average turn around time for

increasing adaptation cost from 2 milliseconds to .08, 1 and 8 seconds. From the table it

can be seen that, in general the decrease increases as the percentage of malleable jobs

increases and reaches a maximum. After that the performance degradation improves as

the number of malleable jobs increases further. The reason for this behavior is that as the

number of malleable jobs in the workload increases the number of adaptation increases

and reaches a maximum at certain job mix. If the number of malleable jobs in the

workload increases further the number of adaptation decreases and reaches a minimum at

100% malleable jobs.

152

www.manaraa.com

Table 6.11 Impact of adaptation cost on utilization

Adapt.
Cost

Utilization
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.002 0.92574 0.99747 0.9993 0.99873 0.9998 0.9998 0.99849 0.99874 0.99979 0.99974
0.004 0.92574 0.99733 0.99907 0.99894 0.99973 0.99974 0.99844 0.99879 0.99973 0.99971
0.008 0.92574 0.99737 0.99882 0.99874 0.99961 0.99963 0.99852 0.99863 0.9996 0.99964

0.01 0.92574 0.99727 0.99867 0.99867 0.9995 0.99958 0.99861 0.99847 0.99954 0.99961
0.02 0.92574 0.99645 0.99879 0.99894 0.99923 0.99931 0.99797 0.99816 0.9989 0.99945
0.04 0.92568 0.99618 0.99829 0.99801 0.99858 0.99882 0.99753 0.99769 0.99822 0.99913
0.08 0.9267 0.99544 0.99737 0.99652 0.99747 0.99736 0.99668 0.99588 0.99708 0.99849

0.2 0.92542 0.9899 0.99263 0.99259 0.99387 0.99505 0.99346 0.99192 0.99353 0.99658
0.4 0.92512 0.98514 0.98681 0.98795 0.98917 0.98933 0.98866 0.98433 0.98802 0.99328
0.8 0.9233 0.97772 0.97528 0.97671 0.97995 0.97863 0.98058 0.97214 0.97787 0.98677

1 0.92256 0.97392 0.97156 0.97412 0.97773 0.97598 0.97581 0.96689 0.97184 0.98436
2 0.91823 0.95577 0.95832 0.94937 0.95843 0.95465 0.95107 0.94149 0.94814 0.97086
4 0.91612 0.94205 0.93835 0.92872 0.93403 0.9289 0.92023 0.89598 0.90425 0.94731
8 0.9032 0.90535 0.90638 0.89453 0.90023 0.88113 0.87146 0.84255 0.86391 0.91249

Impact of Adaptation Cost

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

% of Malleable Jobs

Ut
ili

za
tio

n

2 ms.
0.4 Secs.
1 Secs.
2 Secs.
4 Secs.
8 Secs.

Figure 6.15 Impact of adaptation cost on utilization. Flexibility range: 2- 128,
negotiation cost: 1.5ms

153

www.manaraa.com

Impact of Adaptation Cost

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 1 2 3 4 5 6 7 8
Adaptation Cost (Secs.)

U
til

iz
at

io
n

10%

20%

30%

40%

50%

Figure 6.16 Impact of adaptation cost on utilization. Flexibility range: 2- 128,
negotiation cost: 1.5ms

154

www.manaraa.com

Table 6.12 Impact of adaptation cost on average turn around time

Adapt.
Cost

Average Turn Around Time (Seconds)
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.002 101443 93002 92724 91822 91913 91607 89184 88069 89398 86115
0.004 101443 93008 92741 91815 91918 91609 89187 88226 89402 86115
0.008 101443 92995 92696 91817 91874 91612 89261 88109 89408 86116

0.01 101443 93003 92756 91820 91968 91614 89008 88025 89411 86117
0.02 101444 93017 92733 91859 91946 91540 89045 88244 89288 86119
0.04 101452 93069 92828 91897 92019 91577 89265 88399 89300 86123
0.08 101456 93134 92865 91959 92097 91567 89400 88376 89259 86133

0.2 101475 93610 93197 92211 92279 91932 89493 88489 89670 86159
0.4 101476 94007 93668 92605 92591 92057 89797 88964 90222 86200
0.8 101391 94545 94761 93129 93081 92767 90145 89974 90609 86259

1 101397 94722 94954 93262 93149 92852 90308 89866 90560 86267
2 101566 96088 95352 94754 94143 93787 91494 91340 92057 86378
4 101557 96500 96069 95469 95430 94421 92818 93935 94133 86556
8 101793 97737 97504 96220 96064 95308 94386 95679 95812 86788

Impact of Adaptation Cost

0.82

0.84
0.86

0.88

0.9
0.92

0.94

0.96

0.98
1

1.02

0 1 2 3 4 5 6 7 8
Adaptation Cost (Secs.)

Ut
ili

za
tio

n

60%

70%

80%

90%

100%

Figure 6.17 Impact of adaptation cost on utilization. Flexibility range: 2- 128,
negotiation cost: 1.5ms

155

www.manaraa.com

Impact of Adaptation Cost

84000

89000

94000

99000

0 10 20 30 40 50 60 70 80 90 100

% of Malleable Jobs

Av
g.

 T
AT

 (S
ec

s.
)

2 ms.
0.4 Secs.
1 Secs.
2 Secs.
4 Secs.
8 Secs.

Figure 6.18 Impact of adaptation cost on average turn around time. Flexibility range: 2-
128, negotiation cost: 1.5ms

Impact of Adaptation Cost on Avg. TAT

91000

93000

95000

97000

99000

101000

0 1 2 3 4 5 6 7 8

Adaptation Cost (Secs.)

Av
g.

 T
A

T(
Se

cs
.)

10%
20%
30%
40%
50%

Figure 6.19 Impact of adaptation cost on average turn around time. Flexibility range: 2-
128, negotiation cost: 2ms

156

www.manaraa.com

Impact of Adaptation Cost on Avg. TAT

85000

87000

89000

91000

93000

95000

0 1 2 3 4 5 6 7 8

Adaptation Cost (Secs.)

Av
g.

 T
AT

(S
ec

s.
)

60%

70%

80%

90%

100%

Figure 6.20 Impact of adaptation cost on average turn around time. Flexibility range: 2-
128, negotiation cost: 1.5ms

Table 6.13 Decrease in performance as adaptation cost increased from 1.5 ms to 8 seconds

% of Malleable Jobs 10 20 30 40 50 60 70 80 90 100
% Decrease in
Utilization (0.08 Sec) 0.03 0.767 0.68 0.61 0.59 0.48 0.50 0.68 0.63 0.316
% Decrease in
Utilization (1 Sec) 0.32 2.36 2.77 2.46 2.21 2.38 2.27 3.19 2.80 1.538
% Decrease in
Utilization (8 Sec) 2.25 9.21 9.29 10.42 9.96 11.87 12.70 15.62 13.59 8.725
% Decrease in Avg.
TAT (0.08 Sec) 0.01 0.14 0.15 0.15 0.20 -0.05 0.24 0.35 -0.16 0.021
% Decrease in Avg.
TAT (1 Sec) -0.05 1.85 2.40 1.57 1.34 1.36 1.26 2.04 1.30 0.18
% Decrease in Avg.
TAT (8 Sec) 0.35 5.09 5.16 4.79 4.52 4.04 5.83 8.64 7.17 0.78

157

www.manaraa.com

Table 6.14 Variation of number of Adaptation with the variation of number of malleable
jobs in the workload

% of Malleable Number of
Jobs Adaptation

10 599
20 1699
30 2750
40 3709
50 4072
60 6090
70 6106
80 4636
90 2882

100 306

6.7 Summary

Results of simulation experiments to investigate the impact of RMS and workload

parameters on system and application performance have been presented in this chapter.

The impact of the following parameters on system and application performance has been

investigated through simulation experiments. 1) The number of malleable jobs in the

workload, 2) flexibility of malleable jobs, 3) cost of negotiation, and 4) cost of adaptation

of malleable jobs. During the simulation experiments one of the parameters has been

varied while other parameters have been kept constant.

The performance in general improves with increase of percentage of malleable

jobs in the workload and saturates at a certain job mix and it increases very little after

saturation. The most important finding is that irrespective of cluster size, or base line

utilization with an all rigid workload, it is possible to achieve maximum utilization with a
158

www.manaraa.com

malleable workload. The maximum possible utilization can be achieved with relatively

few malleable jobs (20% in our experiments).

The performance in general improves as the flexibility increases up to certain

flexibility. The performance than saturates. Increasing flexibility further does not

improve performance. The impact of minimum processor of flexibility range has more

impact on performance than the flexibility range itself. Decreasing the minimum number

of processors for same the flexibility range increases the performance.

Both negotiation cost and adaptations cost impact the performance. As these costs

increases the performance decreases. Negotiation costs up to 0.8 second had no

significant impact on performance. Negotiation cost does not impact 10% and 100% job

mixes. For the same negotiation cost as the number of malleable job increases the

utilization decreases, and then the utilization increases as the number of malleable

increases further. The number of adaptations and the number of negotiations increase as

the number of malleable job increases and they reach a maximum. After the maxima the

number of negotiations and the number of adaptations decreases as the number of

malleable jobs increases further. The impact of adaptation cost on performance more

pronounced compared to the impact of negotiation cost.

159

www.manaraa.com

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

Current resource management systems for clusters support mostly rigid

applications. A few systems support moldable applications, where there is some

flexibility in the amount of resources that can be assigned before the applications start.

The dynamic nature of adaptive applications requires a new paradigm for cluster resource

management. If workloads contain rigid applications only, some of the processors may

remain idle even though there are applications waiting in the queue to be executed. That

is due to the fact that the available number of processors is not enough to satisfy the

requirements of the waiting applications to be executed. However, if the workload

contains malleable applications, they can utilize otherwise idle resources and improve

performance. Conversely, malleable applications can shrink at a scheduler’s request to

relinquish resources that can be allocated to evolving applications asking for resources, or

to applications waiting in the pending queue.

Existing resource management systems are not capable of handling malleable

applications. The absence of RMS support is one of the major obstacles for application

developers to write malleable applications. On the other hand, since there is an absence of

malleable applications, researchers have not been sufficiently motivated to research and

160

www.manaraa.com

develop RMS support for malleable applications. Management of malleable applications

in a distributed environment is a multi-faceted problem and the research issues are

complex and interrelated. The nature, complexities and relationship of these issues are

not well researched and understood. Before developing malleable applications or

infrastructure support for malleable applications, these issues needs to be investigated and

studied in detail. One approach to address this problem is to develop a model for adaptive

parallel systems and investigate and understand the behavior of these systems by

numerically simulating the model.

7.1 Contributions and Summary

This dissertation makes several contributions to the research in the area of

adaptive parallel systems. Specific contributions of this dissertation are described below.

A conceptual model and subsequently, a semi-formal mathematical model have

been developed for an adaptive parallel system. The system consists of a RMS capable of

managing rigid as well as malleable applications, and workloads containing both rigid

and malleable applications. The model of this system consists of three components: a

model for the resource management system, a model for malleable and rigid applications,

and a model for generating malleable workloads. The model can be used to investigate

and understand the behavior of the system qualitatively and quantitatively under different

conditions.

161

www.manaraa.com

A discrete event simulator has been developed which can be used to numerically

simulate the model of adaptive parallel systems. In particular the simulator can be used to

determine the impact of the RMS, the application and the workload parameters on system

and application performance. The simulator has been developed following the standard

architecture for discrete even simulators. As a result the, simulator is modular and

flexible enough to accommodate modification in the model with minimum rework. For

example, to investigate the impact of different scheduling algorithms, one needs to

modify the scheduler module without making changes to any other parts of the simulator.

In this dissertation, the first detailed empirical evaluation of the impact of the

RMS and the workload parameters on system and application performance has been

reported. The key contribution of this dissertation is discovering the following new

knowledge about adaptive parallel systems with malleable applications.

1. The performance in general improves with an increase in the percentage of

malleable jobs in a workload. The performance saturates at a certain

rigid/malleable job mix and it increases very little after saturation. Also, a

high percentage of malleable jobs is not necessary to make significant

improvement in performance.

2. The presence of malleable jobs in a workload decreases the average turn

around time and the average wait time compared to a workload with all

162

www.manaraa.com

rigid jobs. However, the presence of malleable applications increases the

average execution time.

3. In general the performance improves as the flexibility increases up to a

certain point, than it saturates. The minimum number processors in the

flexibility range has more impact on performance than the flexibility range

itself. Decreasing the minimum number of processors for the same

flexibility range increases the performance.

4. The negotiation cost has a small impact on the performance. Small

negotiation costs (costs up to one second) do not have any significant

impact on the performance. If negotiation costs increase further, the

performance decreases.

5. For negotiation costs beyond 2 seconds, as the number of malleable jobs

in a workload increases, the performance increases and reaches a

maximum point. Increasing the number of malleable jobs further results

into a decrease in the performance and it reaches a minimum. The

performance starts increasing again as the number of malleable jobs

increases further.

163

www.manaraa.com

6. The number of negotiations for a given workload increases as number of

malleable jobs increases up to a certain point. As the number of malleable

jobs increases further the number of negotiations decreases, and it reaches

a minimum as the percentage of malleable jobs reaches 100.

7. The performance degrades as the application adaptation cost increases.

The impact of the application adaptation cost is much more profound

compared to that of the negotiation cost.

Another contribution of this dissertation is the development of a prototype RMS

system capable of managing malleable as well as rigid applications. Even though the

prototype RMS is not robust enough to be of production quality, it provides valuable

information regarding difficulties of developing an RMS for adaptive applications. As

part of developing the prototype RMS, a negotiation protocol has also been developed.

The following lessons have been learned from this exercise.

1. Developing a communication infrastructure to manage negotiation

between malleable applications and RMS is the most critical and difficult

part.

2. A negotiation mechanism that can handle ill-behaved malleable

applications (such as an application that does not respond to a negotiation

offers in a timely manner) is important.

164

www.manaraa.com

3. Multistage scheduling is required to take advantage of malleable

application to the full extent.

7.2 Future Work

The paradigm of adaptive applications is relatively new and not well understood.

There are many issues that have not been addressed in this dissertation that are worth

investigating in the future.

In this dissertation, the algorithm adopted for scheduling is very simple. In

particular, the selection of candidates for processor preemption is on a first start first

candidate basis, which results into a high number of negotiations, and consequently a

high number of adaptations. Further research in the scheduling algorithm is required,

especially regarding a candidate selection policy with the goal of reducing the number of

negotiations and adaptations. A scheduling algorithm involving a candidate selection

policy, such as selecting a candidate which can give up the maximum number of

processors and multistage scheduling, can be investigated.

Further research to investigate the impact of failed negotiations, which has not

been investigated in this research, also needs to be performed. In modeling a malleable

application, some simplified assumptions have been made which are mostly applicable to

embarrassingly parallel applications with no data dependency. Further research is

required in modeling malleable applications which are not embarrassingly parallel, or

have data dependency among tasks.

165

www.manaraa.com

One area of future work is to investigate simulation outputs to discover

relationship and dependencies among model parameters using statistical techniques.

Another area of future research is to develop a programming model for adaptive

applications. Moreover, future research is required in modeling of an adaptive system that

includes evolving applications along with malleable applications.

166

www.manaraa.com

REFERENCES

1. D. G. Feitelson and L. Rudolph, “Towards convergence in job scheduling for
parallel super computers,” in Job Scheduling Strategies for Parallel Processing,
Vol. 1162, Lecture Notes in Computer Science D. G. Feitelson and L. Rudolph
Eds. Springer-Verilag, 1996, pp 1-26.

2. C. R. Anderson, An Implementation of the Fast Multipole Method SIAM J. Sci.
Stat. Comput.,1992, 923-947.

3. I. Banicescu. Load Balancing and Data Locality in the Parallelization of the Fast
Multipole Algorithm, Ph.D. Dissertation, Polytechnic University, 1996 January.

4. K. Droegemeier, “Transforming the Sensing and Prediction of Intense Local
Weather Through Dynamic Adaptation: People and Technologies Interacting with
the Atmosphere”, Keynote Presentation in the 6th International Conference on
Linux Cluster: The HPC Revolution 2005, April 25-28, Chapel Hill, North
Carolina, http://www.linuxclustersinstitute.org/Linux-HPC-
revolution/Archive/2005presentations.html

5. K. Droegemeier, K. Brewster, M. Xue, D. Weber, D. Ganon, B. Plale, D. Reed, L.
Ramakrishnan, J. Almedia, R. Wilhelmson, T. Baltzer, B. Dominico, D. Murray,
M. Ramamurthy, A. Wilson, R. Clark, S. Yalda, S. Graves, R. Ramachandran, J.
Rushing, E. Joseph, and V. Morris, “Service-Oriented Environments for
Dynamically Interacting with Mesoscale Weather”, Computing in Science and
Engineering, 7:6 pp 12-29, 2005.

6. P.-F. Dutot, and D. Trystram, Scheduling on hierarchical clusters using malleable
tasks, Proceedings of the thirteenth annual ACM symposium on Parallel
algorithms and architectures, p.199-208, July 2001, Crete Island, Greece

7. R. Lepere, G. Mounie, and D. Trystram. An approximation algorithm for
scheduling trees of malleable tasks. European Journal of Operational Research,
(142):242-249.

 167

http://www.linuxclustersinstitute.org/Linux-HPC

www.manaraa.com

8. R. Lepere, D. Trystram, and G.J. Woeginger. Approximation scheduling for
malleable tasks under precedence constraints. International Journal of Foundation
in Computer Science, 13(4):613-627, 2002.

9. G. Mounie, C. Rapine, and D. Trystram, “Efficient Approximation Algorithms for
scheduling Malleable Tasks. In the Proceedings of the eleventh annual ACM
symposium on Parallel algorithms and architectures, Saint Malo, France, pp: 23 –
32, 1999.

10. J. Hungershofer, “On the Combined Scheduling of Malleable and Rigid Jobs”, in
Proceedings of the 16th Synposium on Computer Architecture and High
Performance Computing, 2004.

11. Jan Hungershofer, Achim Streit, and Jens-Michael Wierum. Efficient Resource
Management for Malleable Applications. Technical Report PC2, TR-003-01,
December 2001, http://wwwcs.upb.de/pc2/papers/files/394.pdf

12. S.S. Vadhiyar and J. Dongarra, “SRS: A framework for developing malleable and
migratable parallel applications for distributed systems”, Parallel Processing
Letters, Vol. 13, No. 2 (2003) 291-312

13. J. E. Moreira and V. K. Naik. Dynamic Resource Management on Distributed
Systems Using Reconfigurable Applications. IBM Journal of Research and
Development, Vol. 41, No. 3, May 1997, pp 303 – 330.

14. L. V. Kale, S. Kumar, and J. DeSouza, “A Malleable-Job System for Timeshared
Parallel Machines”, L,2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid 2002), May 21-24, 2002, Berlin, Germany.

15. L. V. Kale, S. Kumar, and J. DeSouza, “An Adaptive Job Scheduler for
Timeshared Parallel Machines”, L, PPL Technical Report 00-02, University of
Illinois at Urbana-Champaign, Sep 2000.

16. S.K. Ghafoor, T.A. Haupt, I. Banicescu, R.L. Carino, “A Resource Management
System for Adaptive Parallel Applications in Cluster Environments,” to appear in
proceedings of the 6th International Conference on Linux Cluster: The HPC
Revolution 2005, April 25-28, Chapel Hill, North Carolina.

17. S.K. Ghafoor, T.A. Haupt, and S.N. Gasula, “A Communication Protocol for
Adaptive Parallel Applications in Cluster Environments,” to appear in

168

http://wwwcs.upb.de/pc2/papers/files/394.pdf

www.manaraa.com

Proceedings of the High Performance Computing Symposium (HPC 2005), April
3- 7, 2005, San Diego, 2005.

18. S.K. Ghafoor, T.A. Haupt, M. Rashid, N. Ammari, “Impact of Malleable Jobs on
System and Application Performance,” to appear in Proceedings of the High
Performance Computing Symposium (HPC 2006), April 2- 6, 2006, Huntsville,
Al, 2006.

19. The Condor Project Homepage, http://www.cs.wisc.edu/condor/

20. DQS-Distributed Queuing System. http://www.scri.fsu.edu/~pasko/dqs.html

21. M.L. Massie, B.N. Chun, D.E. Culler, “The Ganglia distributed monitoring
system: Design, implementation and experience” Parallel Computing, vol. 30,
Issue 7, July 2004.

22. S. Angaluri. “ClusterController - An interoperable scheduler architecture for
windows and linux”, Presented at the 2nd Cluster Computing in the Sciences
Conference, University of Utah, Salt Lake city. Feb 9, 2001.

23. MPI Software Technology, Inc., ClusterController™ User Guide Version 1.0.1,
2001.

24. Portable Batch System. http://www.openpbs.org

25. Platform LSF Family of Products. http://www.platform.com/products/LSFfimily.

26. Grid Engine. http://www.gridengine.sunsource.net

27. Maui Cluster Scheduler. http://www.clusterresources.com/products/maui

28. Moab Cluster Suit.
http://www.cluterresources.com/products/moabclustersuit.shtml

29. S.S. Vadhiyar and J. Dongarra, “SRS: A framework for developing malleable and
migratable parallel applications for distributed systems”, Parallel Processing
Letters, Vol. 13, No. 2 (2003) 291-312

30. L. Kale and S. Krishnan. CHARM++: A portable concurrent object oriented
system based on C++. In Proceedings of the conference object oriented
programming systems, languages and applications, September 1993.

169

http://www.cluterresources.com/products/moabclustersuit.shtml
http://www.clusterresources.com/products/maui
http://www.gridengine.sunsource.net
http://www.platform.com/products/LSFfimily
http://www.openpbs.org
http://www.scri.fsu.edu/~pasko/dqs.html
http://www.cs.wisc.edu/condor

www.manaraa.com

31. L. Kale and S. Krishnan. CHARM++: Parallel programming with message-driven
objects. In G.V. Wilson and P. Lu, editors, Parallel programming using C++.
Pages 175-213. MIT Press, 1996.

32. L. V. Kale, M. Bhandarkar, N. Jagathsen, S. Krishnan, and J yelon. Converse: An
interoperable framework for parallel. In proceedings of the 1oth international
parllel processing symposium, pages 212-217, April 1996.

33. M. Bhandarkar, L. V. Kale, E de Sturler, and J. Hoefinger. Object-based adaptive
load balancing for MPI programs. In proceedings of the international conference
on computational science, Sanfarancisco, CA LNCS 2074, pages 108-117, May
2001.

34. R. B. Konuru, J. E. Moreira, and V. K. Naik, “Application-Assisted Dynamic
scheduling on Large-Scale Multi-computer Systems,” in Proceedings of the
Second International Euro-Par conference, Lyon, France, Volume 1124 of Lecture
Notes in Computer Science, august 1996, pp II:621-630.

35. S. Midkiff, J. E. Moreira, and V. K. Naik, “Run-Time Support for Dynamic
Processor Allocation in HPF programs,” in Proceedings of the Eighth SIAM
Conference on Parallel Processing for Scientific Computing, Minneapolis, MN,
March 14-17, 1997.

36. R. Jha, M. Muhammad, S. Yalamanchili, K. Schwan, D. Ivan Rosu, and C. de
Castro, "Adaptive resource allocation for embedded parallel applications", in
Proceedings of the 3rd International Conference on High Performance
Computing", Trivandrum India, December 1996.

37. D. Ivan Rosu, K. Schwan, S. Yalamanchili, and R. Jha, "On adaptive resource
allocation for complex real-time applications", in Proceedings of the 18th IEEE
Real-Time Systems Symposium, San Francisco, December 1997.

38. G. Edjlali, G. Agrawal, A. Sussman, J. Humphries, and J. Saltz, ``Runtime and
Compiler Support for Programming in Adaptive Parallel Environments'', in
Journal of Scientific Programming, vol. 6, no. 2, pp. 215-227, 1997.

39. G. Edjlali, G. Agrawal, A. Sussman and J. Saltz. Data Parallel Programming in an
Adaptive Environment. In the Proceedings of the Ninth International Parallel
Processing Symposium. April 1995. pages 827-832. IEEE Computer Society
Press.

170

www.manaraa.com

40. J. Turek, J. Wolf, and P. Yu, “Approximation algorithms for scheduling
parallelizable tasks”, Proceeding of the 4th ACM Annual Symposium on Parallel
Algorithms and Architectures, 1992, pp. 323-332.

41. P.-F. Dutot, G. Mounie and D. Trystram, “Scheduling Parallel Tasks –
Approximation Algorithms”, Handbook of Scheduling: Algorithms, Models, and
Performance Analysis. Edited by Joseph Y-T. Leung, Published by CRC Press,
Boca Raton, FL, USA, 2004.

42. D. Gelernter and D. Kaminsky, “Supercomputing Out of Recycled Garbage:
Preliminary Experience with Piranha,” in Proceedings of international Conference
on Supercomputing, ACM July 19-23, pp. 417-427.

43. N. Carriero and D. Gelernter, How to write parllel Programs: Afirst course, The
MIT Press, Cambridge, MA, 1990.

44. Linda User Guide,
HTTP://WWW.LINDASPACES.COM/DOWNLOADS/LINDAMANUAL.PDF

45. K. A. Robins and S. Robins, The Cray X-MP/Model 24, Volume 374 of Lectures
Notes in Computer Science, Springer-Verilag, New York, 1989.

46. A. Gupta, A. Tucker, and L. Stevens, “Making Effective Use of Shared-Memory
Multiprocessors: The Process Control Approach,” Technical Report CSL-TR-91-
475A, Computer Systems Laboratory, Stanford University, Stanford, CA, 1991.

47. C. McCann, R. Vaswami, and J. Zahorjan, “ A Dynamic Processor Allocation
Policy for Multiprogrammed Shared-Memory Multiprocessors,” ACM
Transaction on Computer System, 11, No. 2, 146-178 (May 1993).

48. J. E. Moreira, On the Implementation and Effectiveness of Autoscheduling for
Shared Memory Multiprocessors, Ph.D. Dissertation, University of Illinois at
Urbana-Champaign, 1995.

49. C. Polychronopoulos, “Auto-scheduling: Control Flow and Data Flow Come
Together,” Technical Report 1058, Center for Supercomputer Research and
Development, University of Illinois at Urbana-Champaign, December 1990.

50. A. Streit, A self-tuning job scheduler family with dynamic policy switching.
Lecture notes in computer science; vol. 2537, PAGES: 1 - 23 , Springer-
Verlag London, Uk.

51. Y. Zhang, A. Sivasubramaniam, J. Moreira, H. Franke. Impact Of Workload And
System Parameters On Next Generation Cluster Scheduling Mechanisms, IEEE

171

HTTP://WWW.LINDASPACES.COM/DOWNLOADS/LINDAMANUAL.PDF

www.manaraa.com

Transactions On Parallel And Distributed Systems, 12(9):967-985, September
2001.

52. Allen B. Downey, ``A Parallel Workload Model and Its Implications for
Processor Allocation''. 6th Intl. Symp. High Performance Distributed Comput.,
Aug 1997.

53. Dror G. Feitelson and Larry Rudolph, ``Metrics and Benchmarking for Parallel
Job Scheduling''. In Job Scheduling Strategies for Parallel Processing, D. G.
Feitelson and L. Rudolph (Eds.), Springer-Verlag, 1998, Lect. Notes Comput. Sci.
vol. 1459, pp. 1-24.

54. T. Murata, "Petri Nets: Properties, Analysis and Applications," an invited surve y
paper, Proceedings of the IEEE, Vol.77, No.4 pp.541-580, April, 1989.

55. L.M. Kristensen, S. Christensen, K. Jensen:The Practitioner's Guide To Coloured
Petri Nets. International Journal On Software Tools For Technology Transfer, 2
(1998), Springer Verlag, 98-132.

56. A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, Third Edition,
McGraw-Hill Higher Education, 2000, ISBN 0-07-059292-6.

57. J. Hungershofer, “On the Combined Scheduling of Malleable and Rigid Jobs.” In
Proceedings of the 16th Synposium on Computer Architecture and High
Performance Computing, 2004.

58. Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson, ``Modeling User Runtime
Estimates''. 11th Workshop on Job Scheduling Strategies for Parallel Processing
(JSSPP), pp. 1-35, Jun 2005. Lecture Notes in Computer Science Vol.3834.

59. Uri Lublin and Dror G. Feitelson, The Workload on Parallel Supercomputers:
Modeling the Characteristics of Rigid Jobs. J. Parallel & Distributed Comput.
63(11), pp. 1105-1122, Nov 2003.

60. D. G. Feitelson, ``Packing schemes for gang scheduling''. In Job Scheduling
Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (Eds.),
Springer-Verlag, 1996, Lect. Notes Comput. Sci. vol. 1162, pp. 89-110.

61. Maria Calzarossa and Giuseppe Serazzi, ``A Characterization of the Variation in
Time of Workload Arrival Patterns''. IEEE Trans. Comput. C-34(2), pp. 156-162,
Feb 1985.

62. Open System for Earthquake Engineering Simulations,
http://opensees.Berkeley.edu.

172

http://opensees.Berkeley.edu

www.manaraa.com

63. PVM: Parallel Virtual Machine http://www.csm.ornl.gov/pvm/pvm_home.html

64. Schimdt J. W. and R. Taylor, Simulation and analysis of industrial system,
Richard D. Irwin, Homewood, Illinois (1970).

65. Logs of Real Parallel Workloads from Production Systems
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html.

173

http://www.cs.huji.ac.il/labs/parallel/workload/logs.html
http://www.csm.ornl.gov/pvm/pvm_home.html

	Modeling of an Adaptive Parallel System with Malleable Applications in a Distributed Computing Environment
	Recommended Citation

	Microsoft Word - sghafoorlatest.doc

